out of oddity new cryptanalytic techniques against
play

Out of Oddity New Cryptanalytic Techniques against Symmetric - PowerPoint PPT Presentation

Out of Oddity New Cryptanalytic Techniques against Symmetric Primitives Optimized for Integrity Proof Systems Tim Beyne, Anne Canteaut, Itai Dinur, Maria Eichlseder, Gregor Leander, Ga etan Leurent, L eo Perrin, Mar a Naya


  1. Out of Oddity – New Cryptanalytic Techniques against Symmetric Primitives Optimized for Integrity Proof Systems Tim Beyne, Anne Canteaut, Itai Dinur, Maria Eichlseder, Gregor Leander, Ga¨ etan Leurent, L´ eo Perrin, Mar´ ıa Naya Plasencia, Yu Sasaki, Yosuke Todo, Friedrich Wiemer Crypto 2020 - August 2020

  2. Symmetric primitives optimized for a specific cost metric • FHE-friendly encryption: Low-MC [Albrecht et al. 15], Flip [M´ eaux et al. 16], Kreyvium [Canteaut et al. 16], Rasta [Dobraunig et al. 18]... • MPC-friendly block ciphers: MiMC [Albrecht et al. 16] and its variants • Primitives dedicated to new integrity proof systems (STARKs, SNARKs, Bulletproof) : hash functions specified as sequences of low-degree polynomials or low-degree rational maps over a finite field. Older examples: Cradic [Knudsen Nyberg 92], Misty [Matsui 97]. 1

  3. SNARK-friendly and STARK-friendly primitives Performance. • the size of the polynomial relations representing the execution trace over a large finite field should be minimized. • finite fields of odd characteristic, especially prime fields, are suitable. Security. • algebraic attacks based on Gr¨ obner basis [Albrecht et al. 19]... • all other cryptanalytic techniques. 2

  4. Focus on STARK-friendly primitives StarkWare challenges https://starkware.co/hash-challenge/ Keyed permutations. • GMiMC i.e. GMiMC erf over F p [Albrecht et al. 19] • HadesMiMC permutation: Starkad ( F 2 m ) and Poseidon ( F p ) [Grassi et al. 19] Hash functions. sponges using one of the previous functions as inner permutation. 3

  5. Sponge construction Sponge construction with blocksize t and capacity c . output M 0 , . . . , M 7 M 8 , . . . , M 15 π π 4

  6. Parameters Security level q (prime) q (binary) Variant log 2 q c t 2 61 + 20 × 2 32 + 1 2 63 64 4 12 128-d 2 4 128-a 2 125 + 266 × 2 64 + 1 2 125 128 128 bits 2 12 128-c 1 3 128-b 2 253 + 2 199 + 1 2 255 256 1 11 128-e 4 8 256-a 2 125 + 266 × 2 64 + 1 2 125 256 bits 128 4 14 256-b 5

  7. Keypoints • generalization of attacks to fields of any characteristic. • use of the specific algebraic structure to improve classical attacks. 6

  8. Outline • Integral attacks over fields of any characteristic • Integral distinguishers on the full GMiMC • Algebraically-controlled differential attacks on GMiMC 7

  9. Integral attacks over F q When q = 2 m . For any F : F 2 m → F 2 m , for any (affine) subspace V ⊂ F m 2 with deg( F ) < | V | − 1 , � F ( x ) = 0 . x ∈ V Because, for V = b + � a 1 , . . . , a v � , � D a 1 D a 2 . . . D a v F ( b ) = F ( x ) x ∈ V Not valid in odd characteristic. 8

  10. Integral attacks over F q When q = 2 m . For any F : F 2 m → F 2 m , for any (affine) subspace V ⊂ F m 2 with deg( F ) < | V | − 1 , � F ( x ) = 0 . x ∈ V Because, for V = b + � a 1 , . . . , a v � , � D a 1 D a 2 . . . D a v F ( b ) = F ( x ) x ∈ V Not valid in odd characteric. 9

  11. But for any q For any exponent k with 0 ≤ k < q − 1 , x k = 0 � x ∈ F q General result. For any F : F q → F q with deg( F ) < q − 1 , � F ( x ) = 0 . x ∈ F q 10

  12. However, this only works when an input is saturated For any F : F q → F q with deg( F ) < q − 1 , � F ( x ) = 0 . x ∈ F q Less general than the property over F 2 m : For any (affine) subspace V ⊂ F m 2 such that deg( F ) < | V | − 1 , � F ( x ) = 0 . x ∈ V 11

  13. Using multiplicative subgroups Let G be a multiplicative subgroup of F × q . For any F : F q → F q such that deg( F ) < | G | , � F ( x ) = F (0) · | G | . x ∈ G 12

  14. Integral attacks on GMiMC 13

  15. GMiMC with 101 rounds RC 1 x 3 RC 2 x 3 RC 3 x 3 14

  16. A differential property on (2 t − 2) rounds α t − 2 x f ( x ) α 1 α 2 x ∈ F q deg f = 3 ❄ ❄ ❄ ❄ ❄ ( t − 2) rounds ❄ ❄ ❄ ❄ ❄ x + γ 0 f ( x )+ γ 0 γ t − 4 γ t − 3 γ t − 2 ❄ ❄ ❄ ❄ ❄ 2 rounds x ′ ∈ F q ❄ ❄ ❄ ❄ ❄ γ t − 2 g ( x ′ ) x ′ γ 1 γ 2 deg g = 3 ❄ ❄ ❄ ❄ ❄ ( t − 2) rounds ❄ ❄ ❄ ❄ ❄ g ( x ′ )+ δ 1 x ′ + δ 1 δ t − 2 δ t − 1 δ t 15

  17. A differential property on (2 t − 2) rounds α t − 2 x f ( x ) α 1 α 2 x ∈ F q deg f = 3 ❄ ❄ ❄ ❄ ❄ (2 t − 2) rounds x ′ ∈ F q g ( x ′ )+ δ 1 x ′ + δ 1 ❄ ❄ ❄ ❄ ❄ δ t − 2 δ t − 1 δ t deg g = 3 16

  18. Integral distinguisher on GMiMC α t − 2 x f ( x ) α 1 α 2 x ∈ F q deg f = 3 ❄ ❄ ❄ ❄ ❄ (2 t − 2) rounds x ′ ∈ F q g ( x ′ )+ δ 1 x ′ + δ 1 ❄ ❄ ❄ ❄ ❄ δ t − 2 δ t − 1 δ t deg g = 3 ❄ ❄ ❄ ❄ ❄ ( ⌊ log 3 ( q − 2) ⌋− 1) rounds deg x z i = 3 r +1 < q − 1 ❄ ❄ ❄ ❄ ❄ z t − 2 z t − 1 z t z 1 z 2 for r ≤ ⌊ log 3 ( q − 2) ⌋− 1 ❄ ❄ ❄ ❄ ❄ ( t − 1) rounds � t i =2 v i − ( t − 2) v 1 ❄ ❄ ❄ ❄ ❄ is a linear combination of the z i v t − 2 v t − 1 v t v 1 v 2 17

  19. Integral distinguisher on GMiMC With complexity q . After 3 t − 4 + ⌊ log 3 ( q − 2) ⌋ rounds, t � v i − ( t − 2) v 1 i =2 is a polynomial of degree at most ( q − 2) in x . ⇒ It sums to 0 when x varies in F q . Full nb of rounds Nb of rounds of the distinguisher log 2 q t 61 12 101 70 125 4 166 86 125 12 182 110 253 3 326 – 253 11 342 – 18

  20. Integral distinguisher on GMiMC using multiplicative subgroups For q = 2 253 + 2 199 + 1 . After 3 t − 4 + ⌊ log 3 ( | G | − 1) ⌋ rounds, t � v i − ( t − 2) v 1 i =2 is a polynomial of degree at most ( | G | − 1) in x . ⇒ It sums to 0 when x varies in G . Full nb of rounds Nb of rounds of the distinguisher log 2 q t 61 12 101 70 125 4 166 86 125 12 182 110 85 with | G | = 2 128 253 3 326 109 with | G | = 2 128 253 11 342 19

  21. Zero-sum distinguisher on GMiMC With a multiplicative subgroup G . After 4 t − 6 + 2 ⌊ log 3 ( | G | − 1) ⌋ rounds, t − 1 t � � u i − ( t − 2) u t v i − ( t − 2) v 1 and i =1 i =2 sum to 0 when x varies in G . Full nb of rounds Nb of rounds of the ZS | G | log 2 q t 61 12 101 118 q 2 33 · 167 · 211 ≃ 2 48 61 12 101 102 125 4 166 166 q 125 12 182 198 q 2 128 253 3 326 166 2 128 253 11 342 198 20

  22. Algebraically-controlled differential attacks on GMiMC 21

  23. Algebraically-controlled differential attacks Idea: use algebraic techniques to efficiently find hash function inputs that satisfy a differential characteristic (avoid expensive probabilistic cost) Method: represent the conditions of differential transitions as (efficiently solvable) algebraic equations Application to GMiMC: • exploit algebraic structure to penetrate deep into internal state • attack almost entirely algebraic — differential transitions too expensive to bypass probabilistically Results: • basic method on 3 t − 2 rounds of permutation • extend to more rounds and attack the hash function (e.g., practical 40-round collision on GMiMC-128-d) 22

  24. Application to GMiMC Differential characteristic: ∆ 0 , ∆ ′ 0 arbitrary non-zero differences R S (∆ 0 , ∆ ′ → (∆ ′ 0 , 0 , . . . , 0) − 0 +∆ 1 , ∆ 1 , . . . , ∆ 1 , ∆ 0 ) ∆ 0 → ∆ 1 R S → (∆ 1 +∆ ′ 1 , . . . , ∆ 1 +∆ ′ 1 , ∆ 0 +∆ ′ 1 , ∆ ′ ∆ ′ → ∆ ′ − 0 +∆ 1 ) 0 +∆ 1 1 If ∆ 1 + ∆ ′ 1 = 0 , we get an iterative differential characteristic R t (∆ 0 , ∆ ′ → (∆ 0 − ∆ 1 , ∆ ′ 0 , 0 , . . . , 0) − 0 + ∆ 1 , 0 , . . . , 0) ∆ 1 + ∆ ′ 1 = 0 occurs with probability ≈ 1 /q Condition ∆ 1 + ∆ ′ 1 = 0 is viewed as an equation on values 23

  25. Application to GMiMC Differential characteristic: ∆ 0 , ∆ ′ 0 arbitrary non-zero differences R S (∆ 0 , ∆ ′ → (∆ ′ 0 , 0 , . . . , 0) − 0 +∆ 1 , ∆ 1 , . . . , ∆ 1 , ∆ 0 ) ∆ 0 → ∆ 1 R S → (∆ 1 +∆ ′ 1 , . . . , ∆ 1 +∆ ′ 1 , ∆ 0 +∆ ′ 1 , ∆ ′ ∆ ′ → ∆ ′ − 0 +∆ 1 ) 0 +∆ 1 1 If ∆ 1 + ∆ ′ 1 = 0 , we get an iterative differential characteristic R t (∆ 0 , ∆ ′ → (∆ 0 − ∆ 1 , ∆ ′ 0 , 0 , . . . , 0) − 0 + ∆ 1 , 0 , . . . , 0) ∆ 1 + ∆ ′ 1 = 0 occurs with probability ≈ 1 /q Condition ∆ 1 + ∆ ′ 1 = 0 is viewed as an equation on values 24

  26. Application to GMiMC Differential characteristic: ∆ 0 , ∆ ′ 0 arbitrary non-zero differences R S (∆ 0 , ∆ ′ → (∆ ′ 0 , 0 , . . . , 0) − 0 +∆ 1 , ∆ 1 , . . . , ∆ 1 , ∆ 0 ) ∆ 0 → ∆ 1 R S → (∆ 1 +∆ ′ 1 , . . . , ∆ 1 +∆ ′ 1 , ∆ 0 +∆ ′ 1 , ∆ ′ ∆ ′ → ∆ ′ − 0 +∆ 1 ) 0 +∆ 1 1 If ∆ 1 + ∆ ′ 1 = 0 , we get an iterative differential characteristic R t (∆ 0 , ∆ ′ → (∆ 0 − ∆ 1 , ∆ ′ 0 , 0 , . . . , 0) − 0 + ∆ 1 , 0 , . . . , 0) ∆ 1 + ∆ ′ 1 = 0 occurs with probability ≈ 1 /q Condition ∆ 1 + ∆ ′ 1 = 0 is viewed as an equation on values 25

  27. A differential property on (2 t − 2) rounds α t − 2 x f ( x ) α 1 α 2 x ∈ F q deg f = 3 ❄ ❄ ❄ ❄ ❄ (2 t − 2) rounds x ′ ∈ F q g ( x ′ )+ δ 1 x ′ + δ 1 ❄ ❄ ❄ ❄ ❄ δ t − 2 δ t − 1 δ t deg g = 3 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend