anomalies in cosmic ray composition explanation based on
play

Anomalies in Cosmic Ray Composition: Explanation Based on Mass to - PowerPoint PPT Presentation

Anomalies in Cosmic Ray Composition: Explanation Based on Mass to Charge Ratio Adrian Hanusch , Tatyana Liseykina, Mikhail Malkov Universitt Rostock Institut fr Physik 15. 07. 2017 Anomalies in Cosmic Ray Composition | ICRC 2017 1 / 12


  1. Anomalies in Cosmic Ray Composition: Explanation Based on Mass to Charge Ratio Adrian Hanusch , Tatyana Liseykina, Mikhail Malkov Universität Rostock Institut für Physik 15. 07. 2017 Anomalies in Cosmic Ray Composition | ICRC 2017 1 / 12

  2. Hypothesis of CR origin acceleration by a 1 st order Fermi mechanism diffusive shock acceleration (DSA) • particles gain energy by crossing the shock front • scattering by magnetic perturbations • power-law spectrum f ( p ) ∼ p − q 3 r 4 with q = r − 1 = 1 − M − 2 supernova SN 1006 remnant X-ray Chandra image 15. 07. 2017 Anomalies in Cosmic Ray Composition | ICRC 2017 2 / 12

  3. Anomalies in CR composition Measurements M. Aguilar et al., PRL , 115(21):211101, (2015). � ∆ q ≈ 0 . 1 is in conflict with the DSA � EOM in terms of rigidity R = p c/Z e 1 d R dt = E ( r , t ) + R × B ( r , t ) 1 d r R dt = c � R 2 c � R 2 0 + R 2 0 + R 2 ◮ same phase-space trajectories for R ≫ R 0 = A m p c 2 /Z e 15. 07. 2017 Anomalies in Cosmic Ray Composition | ICRC 2017 3 / 12

  4. Content Anomalies in cosmic ray composition Scenarios Hybrid simulation Basics Simulation set-up Results Particle spectra Injection efficiency Proton-to-helium ratio Summary and Outlook 15. 07. 2017 Anomalies in Cosmic Ray Composition | ICRC 2017 4 / 12

  5. Anomalies in CR composition Scenarios 1. contribution from several SNRs with different p -He mixtures V. I. Zatsepin and N. V. Sokolskaya, Astron. Astrophys. 458, 5 (2006). 2. CR spallation in the ISM P. Blasi and E. Amato, J. Cosmol. Astropart. Phys. 01 (2012). 3. time-dependence of the shock evolution 3.1 effect of SNR environment Y. Ohira and K. Ioka, Astrophys. J. Lett. 729, L13+ (2011). 3.2 time-dependence of shock strength M. A. Malkov, P. H. Diamond, and R. Z. Sagdeev, PRL 108(8), 081104 (2012). 15. 07. 2017 Anomalies in Cosmic Ray Composition | ICRC 2017 5 / 12

  6. Anomalies in CR composition Scenarios 1. contribution from several SNRs with different p -He mixtures V. I. Zatsepin and N. V. Sokolskaya, Astron. Astrophys. 458, 5 (2006). → not testable 2. CR spallation in the ISM P. Blasi and E. Amato, J. Cosmol. Astropart. Phys. 01 (2012). 3. time-dependence of the shock evolution 3.1 effect of SNR environment Y. Ohira and K. Ioka, Astrophys. J. Lett. 729, L13+ (2011). 3.2 time-dependence of shock strength M. A. Malkov, P. H. Diamond, and R. Z. Sagdeev, PRL 108(8), 081104 (2012). 15. 07. 2017 Anomalies in Cosmic Ray Composition | ICRC 2017 5 / 12

  7. Anomalies in CR composition Scenarios 1. contribution from several SNRs with different p -He mixtures V. I. Zatsepin and N. V. Sokolskaya, Astron. Astrophys. 458, 5 (2006). → not testable 2. CR spallation in the ISM P. Blasi and E. Amato, J. Cosmol. Astropart. Phys. 01 (2012). → not sufficient for explaining the p /He ratio A. E. Vladimirov, G. Jóhannesson, I. V. Moskalenko, and T. A. Porter, Astrophys. J. 752, 68 (2012). 3. time-dependence of the shock evolution 3.1 effect of SNR environment Y. Ohira and K. Ioka, Astrophys. J. Lett. 729, L13+ (2011). 3.2 time-dependence of shock strength M. A. Malkov, P. H. Diamond, and R. Z. Sagdeev, PRL 108(8), 081104 (2012). 15. 07. 2017 Anomalies in Cosmic Ray Composition | ICRC 2017 5 / 12

  8. Anomalies in CR composition Scenarios 1. contribution from several SNRs with different p -He mixtures V. I. Zatsepin and N. V. Sokolskaya, Astron. Astrophys. 458, 5 (2006). → not testable 2. CR spallation in the ISM P. Blasi and E. Amato, J. Cosmol. Astropart. Phys. 01 (2012). → not sufficient for explaining the p /He ratio A. E. Vladimirov, G. Jóhannesson, I. V. Moskalenko, and T. A. Porter, Astrophys. J. 752, 68 (2012). 3. time-dependence of the shock evolution 3.1 effect of SNR environment Y. Ohira and K. Ioka, Astrophys. J. Lett. 729, L13+ (2011). → C/He and O/He ratios are independent of R 3.2 time-dependence of shock strength M. A. Malkov, P. H. Diamond, and R. Z. Sagdeev, PRL 108(8), 081104 (2012). 15. 07. 2017 Anomalies in Cosmic Ray Composition | ICRC 2017 5 / 12

  9. Anomalies in CR composition Mass-to-charge ratio assumption mass-to-charge dependence of • injection power law exponent: • 4 q ( M ) = 1 − M − 2 shock strength decreases with • time M. Aguilar et al., PRL , 115(21):211101, (2015). if He 2+ is injected more readily • C/He and O/He ratios are independent of R • at earlier times AMS-02 Collaboration, harder integrated spectra http://www.ams02.org/wp-content/uploads/2016/12/Final.pdf. (2016). ◮ ◮ fractions of different species can probe properties of CR accelerators 15. 07. 2017 Anomalies in Cosmic Ray Composition | ICRC 2017 6 / 12

  10. Hybrid simulation Basics ions determine the relevant scales electrons are treated as a massless fluid � � n e m d v e E + 1 dt = 0 = − e n e − ∇ p e + e n e η J c v e × B ions are treated kinetically (PIC) � � m i d v E + 1 d x dt = q i c v × B − η J dt = v non-relativistic • ∇ × B = 4 π low-frequency magnetostatic model: c J • 1 c ∂ t B = ∇ × E p e ∼ n γ e with γ e = 5 adiabatic relation for electron pressure: • 3 15. 07. 2017 Anomalies in Cosmic Ray Composition | ICRC 2017 7 / 12

  11. Hybrid simulation Simulation set-up 1D spatially, 3D velocity • super-alfvénic plasma flow • enters from the right B 0 = B 0 x • realistic composition: 10% • He 2+ in number density units: t inverse proton gyrofrequency 1 /ω c n upstream density n 0 − − x proton inertial length c/ω p B upstream magnetic − − v Alfvén velocity v A field B 0 − L x up to 17 · 10 3 c/ω p N α ∆ x = 0 . 2 c/ω p , ∆ t = 0 . 01 /v 0 , ppc = 100 , 15. 07. 2017 Anomalies in Cosmic Ray Composition | ICRC 2017 8 / 12

  12. Hybrid simulation Simulation set-up 1D spatially, 3D velocity • super-alfvénic plasma flow • enters from the right B 0 = B 0 x • realistic composition: 10% • He 2+ in number density units: t inverse proton gyrofrequency 1 /ω c n upstream density n 0 − − x proton inertial length c/ω p B upstream magnetic − − v Alfvén velocity v A field B 0 − L x up to 17 · 10 3 c/ω p N α ∆ x = 0 . 2 c/ω p , ∆ t = 0 . 01 /v 0 , ppc = 100 , 15. 07. 2017 Anomalies in Cosmic Ray Composition | ICRC 2017 8 / 12

  13. Results Particle spectra Energy distribution: v 0 = 15 v A , t = 1000 1/ ω c 10 1 f p (E) 10 0 f He (E) 10 -1 f(E) / arb. units 10 -2 10 -3 E 0 = 1 2 m p v 2 A 10 -4 10 -5 10 -6 10 -7 10 0 10 1 10 2 10 3 10 4 10 5 10 6 E / E 0 15. 07. 2017 Anomalies in Cosmic Ray Composition | ICRC 2017 9 / 12

  14. Results Particle spectra Energy distribution: v 0 = 15 v A , t = 1000 1/ ω c 10 1 f p (E) 10 0 f th (E) 10 -1 f(E) / arb. units f He (E) 10 -2 f th (E) 10 -3 E 0 = 1 2 m p v 2 A 10 -4 10 -5 T p = 39.26 T He = 170.08 10 -6 10 -7 10 0 10 1 10 2 10 3 10 4 10 5 10 6 E / E 0 thermal distribution • f th ( E ) ∝ E 1 / 2 exp( − E/T ) 15. 07. 2017 Anomalies in Cosmic Ray Composition | ICRC 2017 9 / 12

  15. Results Particle spectra Energy distribution: v 0 = 15 v A , t = 1000 1/ ω c 10 1 f p (E) 10 0 f th (E) 10 -1 f(E) / arb. units f pow (E) 10 -2 f He (E) f th (E) 10 -3 E 0 = 1 2 m p v 2 A f pow (E) 10 -4 10 -5 T p = 39.26 T He = 170.08 10 -6 10 -7 10 0 10 1 10 2 10 3 10 4 10 5 10 6 E / E 0 power-law with cut-off thermal distribution • • f pow ( E ) ∼ E − q exp( − E/E cut ) f th ( E ) ∝ E 1 / 2 exp( − E/T ) supra-thermal particles • 15. 07. 2017 Anomalies in Cosmic Ray Composition | ICRC 2017 9 / 12

  16. Results Injection efficiency definition of the injection efficiency f ( E inj ) η inj = with E inj from f pow ( E inj ) = f th ( E inj ) � ∞ f th ( E ) d E 0 Energy distribution: v 0 = 15 v A , t = 1000 1/ ω c 10 1 f p (E) 10 0 f th (E) 10 -1 f(E) / arb. units f pow (E) 10 -2 f He (E) 10 -3 f th (E) f pow (E) 10 -4 10 -5 T p = 39.26 T He = 170.08 10 -6 10 -7 10 0 10 1 10 2 10 3 10 4 10 5 10 6 E / E 0 15. 07. 2017 Anomalies in Cosmic Ray Composition | ICRC 2017 10 / 12

  17. Results Injection efficiency definition of the injection efficiency f ( E inj ) η inj = with E inj from f pow ( E inj ) = f th ( E inj ) � ∞ f th ( E ) d E 0 0.05 p + He 2+ agreement with theoretical injection e ffi ciency / % 0.04 • fi t prediction fi t 0.03 η inj ∼ M − 1 ln( M/M ∗ ) 0.02 at high M 0.01 M. A. Malkov, Phys. Rev. E 58, 4911, (1998). fit η ( M ) = a · ( M − b ) · M − c 0 • 0 10 20 30 40 50 M 15. 07. 2017 Anomalies in Cosmic Ray Composition | ICRC 2017 10 / 12

  18. Results Injection efficiency definition of the injection efficiency f ( E inj ) η inj = with E inj from f pow ( E inj ) = f th ( E inj ) � ∞ f th ( E ) d E 0 0.05 p + He 2+ agreement with theoretical injection e ffi ciency / % 0.04 • fi t prediction fi t 0.03 η inj ∼ M − 1 ln( M/M ∗ ) 0.02 at high M 0.01 M. A. Malkov, Phys. Rev. E 58, 4911, (1998). fit η ( M ) = a · ( M − b ) · M − c 0 • 0 10 20 30 40 50 M ◮ slight prevalence of He 2+ injection at high M ◮ proton injection dominant at low M shocks 15. 07. 2017 Anomalies in Cosmic Ray Composition | ICRC 2017 10 / 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend