orthogonal rational functions and rational modifications
play

Orthogonal rational functions and rational modifications of a - PowerPoint PPT Presentation

Introduction Preliminaries Measures on T Examples Measures on I Orthogonal rational functions and rational modifications of a measure Karl Deckers Department of Computer Science, Katholieke Universiteit Leuven, Heverlee, Belgium. PhD


  1. Introduction Preliminaries Measures on T Examples Measures on I Orthogonal rational functions and rational modifications of a measure Karl Deckers Department of Computer Science, Katholieke Universiteit Leuven, Heverlee, Belgium. PhD student. Supervisor: Adhemar Bultheel. September 30, 2008 Karl Deckers ORFs and RM

  2. Introduction Preliminaries Measures on T Examples Measures on I Outline Introduction 1 Preliminaries 2 Measures on T 3 Examples 4 Measures on I 5 Karl Deckers ORFs and RM

  3. Introduction Preliminaries Measures on T Examples Measures on I Motivation Explicit examples of orthogonal rational functions (ORFs) Chebyshev ORFs on I = [ − 1 , 1] w.r.t. � ± 1 � w ( x ) = (1 − x ) a (1 + x ) b , a , b ∈ . 2 Takenaka-Malmquist basis on T = { z : | z | 2 = 1 } w.r.t. Lebesgue measure Karl Deckers ORFs and RM

  4. Introduction Preliminaries Measures on T Examples Measures on I Motivation Relating I and T θ ∈ [ − π, π ] , z = e i θ w ( θ ) = w (cos θ ) | sin θ | , ˚ µ ′ ( z ) ( a , b ) w ( x ) w ( θ ) ˚ ˚ 1 − x 2 � − 1 / 2 − 1 2 , − 1 1 � � � 1 2 i z 1 − x 2 � 1 / 2 sin 2 θ - ( z 2 − 1) 2 � 1 2 , 1 � � 2 4 i z 3 � 1 � 1 / 2 � - ( z − 1) 2 2 , − 1 1 − x � 1 − cos θ 2 1+ x 2 i z 2 � 1 / 2 ( z +1) 2 � − 1 2 , 1 1+ x � � 1 + cos θ 2 i z 2 2 1 − x µ ) → φ n ( z ; ˚ � φ n ( x ; w ) Karl Deckers ORFs and RM

  5. Introduction Preliminaries Measures on T Examples Measures on I Orthogonal polynomials Polynomial modifications µ = | z ± 1 | 2 d ˚ d ˜ µ = (1 ± cos θ ) d ˚ µ z = e i θ , sin 2 θ d ˚ µ = | z 2 − 1 | 2 d ˚ d ˆ µ = µ | p m ( z ) | 2 d ˚ d ˜ µ = µ | ( z − γ 1 ) · . . . · ( z − γ m ) | 2 d ˚ = µ, | γ j | ≤ 1 , j = 1 , . . . , m φ n ( z ; ˜ µ ) ⊥ ˜ µ P n − 1 ⇒ p m ( z ) φ n ( z ; ˜ µ ) ⊥ ˚ µ p m ( z ) P n − 1 ⇒ relation φ n ( z ; ˜ µ ) and φ n + m ( z ; ˚ µ ) Karl Deckers ORFs and RM

  6. Introduction Preliminaries Measures on T Examples Measures on I Orthogonal rational functions Rational modifications | r m ( z ) | 2 d ˚ d ˜ µ = µ 2 � � ( z − γ 1 ) · ... · ( z − γ m ) = d ˚ µ, � � (1 − α 1 z ) · ... · (1 − α m z ) � � | γ j | ≤ 1 , and | α j | < 1 , j = 1 , . . . , m µ ˚ µ r m ( z ) ˚ φ n ( z ; ˜ µ ) ⊥ ˜ L n − 1 ⇒ r m ( z ) φ n ( z ; ˜ µ ) ⊥ ˚ L n − 1 ⇒ relation φ n ( z ; ˜ µ ) and φ n + m ( z ; ˚ µ ) Karl Deckers ORFs and RM

  7. Introduction Preliminaries Measures on T Examples Measures on I Canonical basis for ˚ L Blaschke factors and Blaschke products canonical basis for ˚ L n : � β k | β k | , β k � = 0 z − β k ζ β k ( z ) = η β k 1 − β k z , η β k = 1 , β k = 0 B k ( z ) = ζ β k ( z ) B k − 1 ( z ) , B 0 ( z ) ≡ 1 canonical basis for ˜ L m : ˜ B k ( z ) = ζ α k ( z )˜ B k − 1 ( z ) canonical basis for ˆ L n + m : � ˜ B k ( z ) , k ≤ m ˆ B k ( z ) = ˜ B m ( z ) B k − m ( z ) , k > m Karl Deckers ORFs and RM

  8. Introduction Preliminaries Measures on T Examples Measures on I Definitions Monic ORFs φ n ( z ) is called monic iff φ n ( z ) = 1 · B n ( z ) + f n − 1 ( z ), f n − 1 ∈ ˚ L n − 1 or equivalently φ ∗ n ( β n ) = 1 where φ ∗ n ( z ) = B n ( z ) φ n ∗ ( z ) and φ n ∗ ( z ) = φ n (1 / z ) . Suppose φ n ( z ) = a · B n ( z ) + f n − 1 ( z ), then φ ∗ n ( z ) = B n ( z ) ( a · B n ∗ ( z ) + f n − 1 ∗ ( z )) a + ζ β n ( z ) f ∗ B k ∗ ( z ) = B − 1 � � = n − 1 ( z ) , k ( z ) . Karl Deckers ORFs and RM

  9. Introduction Preliminaries Measures on T Examples Measures on I Definitions From now on we assume φ k ’s are monic ϕ k ’s are orthonormal, with ϕ k = ˚ κ k φ k Reproducing kernel ˚ � n k n ( z , u ; ˚ µ ) = k =0 ϕ k ( z ; ˚ µ ) ϕ k ( u ; ˚ µ ) κ n +1 | 2 φ ∗ n +1 ( z ;˚ µ ) φ ∗ n +1 ( u ;˚ µ ) − φ n +1 ( z ;˚ µ ) φ n +1 ( u ;˚ µ ) = | ˚ , n > 0 1 − ζ β n +1 ( z ) ζ β n +1 ( u ) Karl Deckers ORFs and RM

  10. Introduction Preliminaries Measures on T Examples Measures on I Rational modification Relating monic ORFs µ ˚ µ ˆ φ n ( z ; ˜ µ ) ⊥ ˜ L n − 1 and φ n + m ( z ; ˚ µ ) ⊥ ˚ L n + m − 1 µ ) − r m ( z ) µ ) ∈ ˆ φ n + m ( z ; ˚ m ( β n ) φ n ( z ; ˜ L n + m − 1 r ∗ because φ ∗ n + m ( β n ; ˚ µ ) = 1 and µ )] ∗ ˆ [ r m ( z ) φ n ( z ; ˜ = B n + m ( z ) r m ∗ ( z ) φ n ∗ ( z ; ˜ µ ) ˜ µ ) = r ∗ m ( z ) φ ∗ = B m ( z ) r m ∗ ( z ) B n ( z ) φ n ∗ ( z ; ˜ n ( z ; ˜ µ ) . Karl Deckers ORFs and RM

  11. Introduction Preliminaries Measures on T Examples Measures on I Rational modification Basis for ˆ L n + m − 1 Consider orthogonal decomposition � ⊥ ˚ � µ L n + m − 1 = r m ˚ ˆ r m ˚ L n − 1 ⊕ L n − 1 µ ) } n − 1 k =0 is orthogonal basis for r m ˚ { r m φ k ( z ; ˜ L n − 1 w.r.t. ˚ µ µ where � j � ⊥ ˚ � � { g i , k ( z ) } m i − 1 r m ˚ i =1 is basis for L n − 1 k =0 � g i , k ( z ) = ∂ k ˆ k n + m − 1 ( z , u ; ˚ µ ) � � ∂ u k � � u = γ i Karl Deckers ORFs and RM

  12. Introduction Preliminaries Measures on T Examples Measures on I Rational modification µ ) − r m ( z ) φ n + m ( z ; ˚ m ( β n ) φ n ( z ; ˜ µ ) = r ∗ j m i − 1 n − 1 � � � Λ k r m ( z ) φ k ( z ; ˜ µ ) + λ i , k g i , k ( z ) i =1 k =0 k =0 φ n + m ( z ; ˚ µ ) ⊥ ˚ µ r m ( z ) φ k ( z ; ˜ µ ) and r m ( z ) φ n ( z ; ˜ µ ) ⊥ ˚ µ r m ( z ) φ k ( z ; ˜ µ ), so that Λ k = 0. j m i − 1 µ ) − r m ( z ) � � ⇒ φ n + m ( z ; ˚ m ( β n ) φ n ( z ; ˜ µ ) = λ i , k g i , k ( z ) r ∗ i =1 k =0 Karl Deckers ORFs and RM

  13. Introduction Preliminaries Measures on T Examples Measures on I Rational modification Suppose the zeros γ i are simple: m µ ) − r m ( z ) λ j ˆ � φ n + m ( z ; ˚ m ( β n ) φ n ( z ; ˜ µ ) = k n + m − 1 ( z , γ j ; ˚ µ ) . r ∗ j =1 m � λ j ˆ φ n + m ( γ i ; ˚ µ ) = k n + m − 1 ( γ i , γ j ; ˚ µ ) , i = 1 , . . . , m . j =1 λ = K − 1 φ n + m (˚ µ ) . Karl Deckers ORFs and RM

  14. Introduction Preliminaries Measures on T Examples Measures on I Rational modification Theorem µ where r m ∈ ˜ L m \ ˜ µ = | r m ( z ) | 2 d ˚ Let d ˜ L m − 1 with simple zeros in µ ) denote the monic ORF in ˚ { γ j } m j =1 . Let φ n ( z ; ˜ L n w.r.t. ˜ µ . µ ) denote the monic ORF in ˆ Similarly, let φ n + m ( z ; ˚ L n + m w.r.t. ˚ µ . Then � T � ˆ r m ( z ) 1 φ n + m ( z ; ˚ µ ) k m + n − 1 ( z ; ˚ µ ) � � m ( β n ) φ n ( z ; ˜ µ ) = � � r ∗ det K � φ n + m (˚ µ ) K � � � Karl Deckers ORFs and RM

  15. Introduction Preliminaries Measures on T Examples Measures on I Computational aspects Computing the monic ORFs computing φ n ( z ; ˚ µ m ) by means of intermediate results; i.e. rational modifications of degree 1: � � z − γ � � d ˚ µ 1 = � d ˚ µ � � 1 − α z � � z − γ � φ n ( z ; ˚ µ 1 ) 1 − α z � � 1 − γβ n µ ) − φ n +1 ( γ ; ˚ µ ) ˆ = η α φ n +1 ( z ; ˚ k n ( z , γ ; ˚ µ ) . ˆ 1 − αβ n k n ( γ, γ ; ˚ µ ) distinction between | γ | = 1 and | γ | < 1 Karl Deckers ORFs and RM

  16. Introduction Preliminaries Measures on T Examples Measures on I Computational aspects | γ | = 1 1 − γβ n η α ( z − γ ) 2 1 − αβ n 1 − α z φ n ( z ; ˚ µ 1 ) = × φ ∗ � � φ n +1 ( γ ; ˚ µ ) n +1 ( γ ; ˚ µ ) � � � ′ φ ∗ ′ � φ n +1 ( γ ; ˚ µ ) n +1 ( γ ; ˚ µ ) � � φ ∗ � � ( z − γ ) φ n +1 ( z ; ˚ µ ) φ n +1 ( z ; ˚ µ ) n +1 ( z ; ˚ µ ) � � � φ ∗ � 0 φ n +1 ( γ ; ˚ µ ) n +1 ( γ ; ˚ µ ) , � � � � � � 1 − β n z ′ φ ∗ ′ φ n +1 ( γ ; ˚ µ ) φ n +1 ( γ ; ˚ µ ) n +1 ( γ ; ˚ µ ) � � � 1 − β n γ � ′ represents the derivative of φ . where φ Karl Deckers ORFs and RM

  17. Introduction Preliminaries Measures on T Examples Measures on I Computational aspects | γ | < 1 1 − γβ n η α (1 − γ z )( z − γ ) 1 − αβ n φ n ( z ; ˚ µ 1 ) = × φ ∗ 1 − α z � � φ n +1 ( γ ; ˚ µ ) n +1 ( γ ; ˚ µ ) � � � φ ∗ � n +1 ( γ ; ˚ µ ) φ n +1 ( γ ; ˚ µ ) � � c n ( z ) φ ∗ � � (1 − γ z ) φ n +1 ( z ; ˚ µ ) c n ( z ) φ n +1 ( z ; ˚ µ ) n +1 ( z ; ˚ µ ) � � � � 1 −| γ | 2 � � φ ∗ φ n +1 ( γ ; ˚ µ ) φ n +1 ( γ ; ˚ µ ) n +1 ( γ ; ˚ µ ) , � � 1 − β n γ � � � � φ ∗ 0 n +1 ( γ ; ˚ µ ) φ n +1 ( γ ; ˚ µ ) � � where c n ( z ) = (1 − β n z ). Karl Deckers ORFs and RM

  18. Introduction Preliminaries Measures on T Examples Measures on I Examples Chebyshev ORFs on T ˚ w ( θ ) = 1 ± cos θ a n + z ( z − b n ) zB n − 1 ( z ) 1 − β n z φ n ( z ; ˚ w ) = c n ( z ± 1) 2 w ( θ ) = sin 2 θ ˚ d n + e n z + z 2 ( f n + g n z + z 2 ) zB n − 1 ( z ) 1 − β n z φ n ( z ; ˚ w ) = h n ( z 2 − 1) 2 Karl Deckers ORFs and RM

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend