orthogonal functions with a skew hermitian
play

Orthogonal functions with a skew-Hermitian differentiation matrix - PowerPoint PPT Presentation

Orthogonal functions with a skew-Hermitian differentiation matrix Adhemar Bultheel Dept. Computer Science, KU Leuven ETNA25, Recent Advances in Scientific Computation Santa Margherita di Pula, Sardinia, May 27-30, 2019


  1. Orthogonal functions with a skew-Hermitian differentiation matrix Adhemar Bultheel Dept. Computer Science, KU Leuven ETNA25, Recent Advances in Scientific Computation Santa Margherita di Pula, Sardinia, May 27-30, 2019 http://nalag.cs.kuleuven.be/papers/ade/ETNA25 Adhemar Bultheel (KU leuven) OF with skew differentiation matrix 1 / 28

  2. Motivation: stability of methods for time-dependent PDE Example (diffusion eq.) ∂ u ∂ t = ∂ � a ( x ) ∂ u � , x ∈ [ − 1 , 1] , t > 0 , a ( x ) > 0 u (0) = u 0 . ∂ x ∂ x Discretisation ( D = differentiation matrix): u ′ = DAD u , t > 0 A > 0 , u (0) = u 0 . Stability: if D ⊤ = −D then d � u � 2 1 = u ⊤ u ′ = u ⊤ DAD u = ( D ⊤ u ) ⊤ A ( D u ) ≤ 0 2 d t Challenge: find (orthogonal) basis Φ = [ φ 0 , φ 1 , . . . ] ⊤ , u ( x ) = � u k φ k such that Φ ′ = D Φ with D ⊤ = −D . Adhemar Bultheel (KU leuven) OF with skew differentiation matrix 2 / 28

  3. Example: Divided differences 0 1 0 · · ·   ... − 1 0 1 1     D = ... ...   2∆ x 0 − 1     . ... ... ... . . Note: only first order! Adhemar Bultheel (KU leuven) OF with skew differentiation matrix 3 / 28

  4. Example: Hermite functions ( − 1) n 2 n n ! n 1 / 4 e − x 2 / 2 H n ( x ) , φ n ( x ) = √ n = 0 , 1 , . . . , x ∈ R � φ m ( x ) φ n ( x ) d x = δ m , n , m , n ∈ Z + R � � n n + 1 φ ′ n ( x ) = − 2 φ n − 1 ( x ) + φ n +1 ( x ) , n ∈ Z + 2 0 b 0 0 · · ·   ... − b 0 0 b 1 �   n + 1 Φ ′ = D Φ ,   D = , b n = ... ...   2 0 − b 1     . ... ... ... . . Note: φ n eigenfunction of Fourier operator. Adhemar Bultheel (KU leuven) OF with skew differentiation matrix 4 / 28

  5. How to arrive at such a system? OPS { p n } dense in L 2 ( R , d µ ), d µ ( x ) = w ( x ) d x ξ p n ( ξ ) = β n − 1 p n − 1 ( ξ ) + δ n p n ( ξ ) + β n p n +1 ( ξ ) , δ n ∈ R , β n > 0 skew Hermitian × i n +1 i ξ { i n p n ( ξ ) } = − β n − 1 { i n − 1 p n − 1 ( ξ ) } + i δ n { i n p n ( ξ ) } + β n { i n +1 p n +1 ( ξ ) } get derivative with Fourier transform � ∞ i n e i x ξ p n ( ξ ) | w ( ξ ) | 1 / 2 d ξ φ n ( x ) := √ 2 π −∞ φ ′ n ( x ) = − β n − 1 φ n − 1 ( x ) + i δ n φ n ( x ) + β n φ n +1 ( x ) The { φ n } is orthogonal in L 2 ( R ). Adhemar Bultheel (KU leuven) OF with skew differentiation matrix 5 / 28

  6. How to arrive at such a system? OPS { p n } dense in L 2 ( R , d µ ), d µ ( x ) = w ( x ) d x ξ p n ( ξ ) = β n − 1 p n − 1 ( ξ ) + δ n p n ( ξ ) + β n p n +1 ( ξ ) , δ n ∈ R , β n > 0 skew Hermitian × i n +1 i ξ { i n p n ( ξ ) } = − β n − 1 { i n − 1 p n − 1 ( ξ ) } + i δ n { i n p n ( ξ ) } + β n { i n +1 p n +1 ( ξ ) } get derivative with Fourier transform � ∞ i n e i x ξ p n ( ξ ) | w ( ξ ) | 1 / 2 d ξ φ n ( x ) := √ 2 π −∞ φ ′ n ( x ) = − β n − 1 φ n − 1 ( x ) + i δ n φ n ( x ) + β n φ n +1 ( x ) The { φ n } is orthogonal in L 2 ( R ). Adhemar Bultheel (KU leuven) OF with skew differentiation matrix 5 / 28

  7. How to arrive at such a system? OPS { p n } dense in L 2 ( R , d µ ), d µ ( x ) = w ( x ) d x ξ p n ( ξ ) = β n − 1 p n − 1 ( ξ ) + δ n p n ( ξ ) + β n p n +1 ( ξ ) , δ n ∈ R , β n > 0 skew Hermitian × i n +1 i ξ { i n p n ( ξ ) } = − β n − 1 { i n − 1 p n − 1 ( ξ ) } + i δ n { i n p n ( ξ ) } + β n { i n +1 p n +1 ( ξ ) } get derivative with Fourier transform � ∞ i n e i x ξ p n ( ξ ) | w ( ξ ) | 1 / 2 d ξ φ n ( x ) := √ 2 π −∞ φ ′ n ( x ) = − β n − 1 φ n − 1 ( x ) + i δ n φ n ( x ) + β n φ n +1 ( x ) The { φ n } is orthogonal in L 2 ( R ). Adhemar Bultheel (KU leuven) OF with skew differentiation matrix 5 / 28

  8. How to arrive at such a system? OPS { p n } dense in L 2 ( R , d µ ), d µ ( x ) = w ( x ) d x ξ p n ( ξ ) = β n − 1 p n − 1 ( ξ ) + δ n p n ( ξ ) + β n p n +1 ( ξ ) , δ n ∈ R , β n > 0 skew Hermitian × i n +1 i ξ { i n p n ( ξ ) } = − β n − 1 { i n − 1 p n − 1 ( ξ ) } + i δ n { i n p n ( ξ ) } + β n { i n +1 p n +1 ( ξ ) } get derivative with Fourier transform � ∞ i n e i x ξ p n ( ξ ) | w ( ξ ) | 1 / 2 d ξ φ n ( x ) := √ 2 π −∞ φ ′ n ( x ) = − β n − 1 φ n − 1 ( x ) + i δ n φ n ( x ) + β n φ n +1 ( x ) The { φ n } is orthogonal in L 2 ( R ). Adhemar Bultheel (KU leuven) OF with skew differentiation matrix 5 / 28

  9. General form The previous construct is a canonical choice. More generally we have: Theorem (Iserles & Webb, 2019 1 ) With { φ n } as before, also φ n ( x ) = Ae i ( ω x + κ n ) φ n ( Bx + C ) ˜ ω, A , B , C , κ n ∈ R , AB � = 0 satisfies the same properties. 1 A. Iserles & M. Webb, A family of orthogonal rational functions and other orthogonal systems with a skew-Hermitian differentiation matrix , J. Fourier Anal. Appl., 2019, to appear. Adhemar Bultheel (KU leuven) OF with skew differentiation matrix 6 / 28

  10. Paley-Wiener Theorem (Iserles & Webb, 2019 2 ) With { φ n } as before, assume the differentiation matrix is irreducible, then { φ n } is dense in PW Ω ( R ) where Ω = supp ( d µ ) . 2 A. Iserles & M. Webb, Orthogonal systems with a skew-symmetric differentiation matrix , Foundations of Computational Mathematics, 2019, to appear. Adhemar Bultheel (KU leuven) OF with skew differentiation matrix 7 / 28

  11. Some notes and computation If φ ′ n ( x ) = − b n − 1 φ n − 1 ( x ) + i c n φ n ( x ) + b n φ n +1 ( x ) then c n = 0 iff d µ is symmetric: w ( − ξ ) = w ( ξ ). � ∞ 1 1 −∞ e ix ξ | w ( ξ ) | 1 / 2 d ξ � If w ( ξ ) d ξ = 1 then p 0 = 1 and φ 0 = √ √ 2 π 2 π φ 1 = 1 b 0 [ φ ′ 0 − i c 0 φ 0 ] φ 2 = 1 1 b 1 [ φ ′ b 0 b 1 [ ∗ φ 0 + ∗ φ ′ 0 + ∗ φ ′′ 1 + b 0 φ 0 − i c 1 φ 1 ] = 0 ] · · · 0 + · · · + β n , n φ ( n ) 1 b 0 b 1 ··· b n − 1 [ β n , 0 φ 0 + β n , 1 φ ′ φ n = 0 ] β 0 , 0 = β 1 , 1 = 1 , β 1 , 0 = − i c 0 + recurrence for β n ,ℓ if n > 1 1 If p n ( ξ ) = � n ℓ =0 p n ,ℓ ξ ℓ , then 1 n i n i n � � − i d ( − i ) ℓ p n ,ℓ φ ( ℓ ) � φ n = = φ 0 p n 0 p 0 , 0 p 0 , 0 d x ℓ =0 1 A. Iserles & M. Webb, A family of orthogonal rational functions and other orthogonal systems with a skew-Hermitian differentiation matrix , J. Fourier Anal. Appl., 2019, to appear. Adhemar Bultheel (KU leuven) OF with skew differentiation matrix 8 / 28

  12. Some notes and computation If φ ′ n ( x ) = − b n − 1 φ n − 1 ( x ) + i c n φ n ( x ) + b n φ n +1 ( x ) then c n = 0 iff d µ is symmetric: w ( − ξ ) = w ( ξ ). � ∞ 1 1 −∞ e ix ξ | w ( ξ ) | 1 / 2 d ξ � If w ( ξ ) d ξ = 1 then p 0 = 1 and φ 0 = √ √ 2 π 2 π φ 1 = 1 b 0 [ φ ′ 0 − i c 0 φ 0 ] φ 2 = 1 1 b 1 [ φ ′ b 0 b 1 [ ∗ φ 0 + ∗ φ ′ 0 + ∗ φ ′′ 1 + b 0 φ 0 − i c 1 φ 1 ] = 0 ] · · · 0 + · · · + β n , n φ ( n ) 1 b 0 b 1 ··· b n − 1 [ β n , 0 φ 0 + β n , 1 φ ′ φ n = 0 ] β 0 , 0 = β 1 , 1 = 1 , β 1 , 0 = − i c 0 + recurrence for β n ,ℓ if n > 1 1 If p n ( ξ ) = � n ℓ =0 p n ,ℓ ξ ℓ , then 1 n i n i n � � − i d ( − i ) ℓ p n ,ℓ φ ( ℓ ) � φ n = = φ 0 p n 0 p 0 , 0 p 0 , 0 d x ℓ =0 1 A. Iserles & M. Webb, A family of orthogonal rational functions and other orthogonal systems with a skew-Hermitian differentiation matrix , J. Fourier Anal. Appl., 2019, to appear. Adhemar Bultheel (KU leuven) OF with skew differentiation matrix 8 / 28

  13. Some notes and computation If φ ′ n ( x ) = − b n − 1 φ n − 1 ( x ) + i c n φ n ( x ) + b n φ n +1 ( x ) then c n = 0 iff d µ is symmetric: w ( − ξ ) = w ( ξ ). � ∞ 1 1 −∞ e ix ξ | w ( ξ ) | 1 / 2 d ξ � If w ( ξ ) d ξ = 1 then p 0 = 1 and φ 0 = √ √ 2 π 2 π φ 1 = 1 b 0 [ φ ′ 0 − i c 0 φ 0 ] φ 2 = 1 1 b 1 [ φ ′ b 0 b 1 [ ∗ φ 0 + ∗ φ ′ 0 + ∗ φ ′′ 1 + b 0 φ 0 − i c 1 φ 1 ] = 0 ] · · · 0 + · · · + β n , n φ ( n ) 1 b 0 b 1 ··· b n − 1 [ β n , 0 φ 0 + β n , 1 φ ′ φ n = 0 ] β 0 , 0 = β 1 , 1 = 1 , β 1 , 0 = − i c 0 + recurrence for β n ,ℓ if n > 1 1 If p n ( ξ ) = � n ℓ =0 p n ,ℓ ξ ℓ , then 1 n i n i n � � − i d ( − i ) ℓ p n ,ℓ φ ( ℓ ) � φ n = = φ 0 p n 0 p 0 , 0 p 0 , 0 d x ℓ =0 1 A. Iserles & M. Webb, A family of orthogonal rational functions and other orthogonal systems with a skew-Hermitian differentiation matrix , J. Fourier Anal. Appl., 2019, to appear. Adhemar Bultheel (KU leuven) OF with skew differentiation matrix 8 / 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend