orka at fermilab seeking new physics with measurements
play

ORKA at Fermilab: Seeking New Physics with Measurements Seeking New - PowerPoint PPT Presentation

ORKA at Fermilab: Seeking New Physics with Measurements Seeking New Physics with Measurements of the "Golden Kaon" Decay K of the Golden Kaon Decay K Douglas Bryman University of British


  1. ORKA at Fermilab: Seeking New Physics with Measurements Seeking New Physics with Measurements         of the "Golden Kaon" Decay K of the Golden Kaon Decay K Douglas Bryman University of British Columbia April 25, 2013 Argonne Intensity Frontier Workshop

  2. Precision Flavor Physics in the LHC Era A small set of crucial rare particle decays extremely sensitive to new physics at high mass scales p y g   High precsion measurments of the ultra-rare K Q( ) Q(L) Flavor Processes to Study NP y       1(2) -e Conversion, e , eee    ( ( K ) )  e          0 0 2 K , K L           3(3) ( ) b s , , B , , ... Discoveries of new physics at the LHC and elsewhere will require a range of p y q g precision flavor physics experiments to home in on the new interpretation. 2

  3.      K in the Standard Model   The K decays are the most precisely predicted FCNC decays . CERN-ESG-005 μ (s γ d )( ν γ ν ) A single effective operator L L L μ L Dominated by top quark  (charm significant, but controlled) Hadronic matrix element shared with Ke3 Remain clean in most New Physics models      -11 B ( K ) = (7.8 ± 0.8) x 10 Expect total SM theory error ≤ 6%. SM    0 0 -11 B ( K ) = (2.43 ± 0.39) x 10 30% deviation from the SM SM L would be a 5  signal of NP J. Brod, M. Gorbahn, E. Stamou PRD83,034030(2011)

  4.   K : High Sensitivity to New Physics High mass scale effects, Warped Extra Dimensions as a Theory of Flavor, Z’, …??         0 0 B( K ) vs. B( K ) L   Z ' ( m 5 30 TeV ) Z ' 11 →π 0 νν )x10 1 L → SM Br(K 0      11 Br K ( ) 10 x Buras, De Fazio, Girrbach D. M. Straub, arXiv:1012.3893 arXiv:1211.1896 4

  5. Kamenik and Smith (2012) ( ) “FCNC portals to the dark sector”      Dark Sector Decays Dark Sector Decays K B K B / / XX XX compete compete   with SM Decays K B /  n 6 Operator 2 2 m g g   I V V Dimensional tI tI tJ tJ    n n 4 4 2 2 2 2 M M 16 16 Analysis W K decays Highly sensitive for low dimension for low dimension operators link.springer.com/content/pdf/10.1007/JHEP03(2012)090

  6. Challenges for Measuring       K ( )      0 K 64%   21%    K      -11 B ( K ) = (7.8 ± 0.8) x 10 SM I Experimentally weak II signature: backgrounds exceed signals by >10 10 exceed signals by 10 • Determine everything possible about the K and p • ฀ p + /µ + particle ID better than 10 6 ( p + → µ + → e + ) • Work in the CM system (stopped K + ) • Eliminate events with extra charged particles or photons * ฀ p 0 inefficiency < 10 -6 • • Suppress backgrounds well below the expected signal (S/N~10) • * Predict backgrounds from data : dual independent cuts • * Use “Blind analysis” techniques • * Test predictions with outside-the-signal-region measurements 6 • Evaluate candidate events with S/N function

  7. BNL E949 – 3 nd generation  Stop 700 MeV/c K Scintillating fiber tgt. RS RS   Momentum in DC Energy, range in RS     e DC   6 10 suppression  4 Photon Veto PV  6 0 >10 suppression pp 4  Photon Veto Photon Veto          e        e  Decay Sequence Decay Sequence     Veto Additional Veto Additional     Charged Tracks Charged Tracks e  e  e         e  e  500 MHz digitizers 7

  8. Background Suppression: E949 Extreme Photon Detection Efficiency Rejection vs. Acceptance j p 6 6 7 7 0 R j   0 Rejection: >10 i 10 10 10 Possibly the most efficient •E949 photon detector built so far. •E787 VPI&SU 8

  9.        0 11 Background Suppression: 21% <10 K cuts:  Dual Veto and Kinematics (P,R,E...)   Veto Reversed Veto Applied Range vs. Energy Mome ntu m  Max. veto Check for correlations

  10. Pion Range vs. Energy 10 10 (0.78 +- 0.08) 10

  11.       0 0 K Experiments History pe e ts sto y L L  8  2.6 10 x 11 J. Ma 2011

  12.   Emerging K Measurements      K at CERN 75 GeV Kaon Decays-in-flight Proton beam from SPS • Builds on NA-31/NA-48 • Un-separated GHz beam • Aim: 40-50 events/yr at SM • Under construction; start 2013 12

  13.     0 8 5 Rejection goal: 10 Rejection goal: 10 Rejection goal: 10 Rejection goal: 10   / RICH separation up to 35 GeV/c 13 2 Beam tracking: 40 MHz/cm

  14.    0 0 K at J-PARC L  8  Impoved setup based on KEK E391a ( 2.6 10 x ) • Improved J-PARC Beam line • Upgraded Detector • 100 x proton intensity • Aim: few events (S/B~1) at SM ( ) • Under construction; start 2013 14 J. Ma 2011

  15.  CsI Calorimeter: t (50 MeV)~500 ps Expected Photon Veto Performance    0 0 0 Principal background: K L J. Ma 2011, T. Yamanaka 2012

  16. ORKA at Fermilab ORKA at Fermilab  17 institutes in six countries: Canada, China, Italy, Mexico, Russia, USA  Six US universities  Two US National Laboratories  Leadership from previous BNL and FNAL US rare kaon decay experiments

  17. ORKA at the FNALMain Injector         th 4 4 Generation Generation K K Experiment Experiment Incremental Improvements p • 600 MeV/c • K stopping rate x5 with comparable bl instantaneous rate • Larger solid angle • Acceptance x 10 p • Fine segmentation, improved resolutions 30% deviation from the SM Reduced backgrounds: <5% precision g p would be a 5  signal of NP Overall, > 100 x sensitivity

  18. ORKA at Fermilab Main Injector Slow Spill 75 KW 95 GeV/c 44% duty factor (10 s cycle, 4.4 s spill) CDF(B0) collision hall: Existing tunnels and hall, Rad hard, adequate space, existing superconducting magnet superconducting magnet, A0->B0 beamline needed; (required interplay with IARC) 18

  19. •The ORKA new detector payload replaces the CDF tracker volume. E949 Central tracker (similar diameter to ORKA) 19

  20. Kaon Beamline Design 600 MeV/c separated K beam ( K/ π ~4 ) Measure kaon decays at rest. 95 GeV Protons  7 10 K / s 44% . . D F •T. Kobilarcik, D. Jensen (FNAL), et al. G4Beamline studies

  21. Evolution to 4 th Generation Detector • Simulations studies • R & D underway on detector refinements y • ILCroot framework established • Efficient photon detectors • Range stack segmentation and readout - Adriano (INFN), Shashlyik • Photon veto geometry and function • Solid state photo-sensors -- SiPMs • Target segmentation and readout g g • Range stack tracking -- GEM • Drift chamber parameters • Low mass drift chamber design • Kaon beam line: G4Beamline • Preliminary engineering concepts • Detector support in CDF magnet • Installation issues • Power, cooling and cabling issues

  22. ILCroot Simulations ILCroot Simulations BNL/FNAL/INFN/TRIUMF-UBC

  23. ORKA Detector improvements Incremental increases in signal acceptance based largely on E787/E949 measurements. Additional acceptance gains expected from trigger improvements. 24

  24.       e        e  Decay Sequence Decay Sequence           e  e  25

  25.       e        e  Decay Sequence Decay Sequence ORKA ORKA             e  e  26

  26. ORKA ORKA ORKA K   K   K  Decay Time K  Decay Time     ORKA 2 ns 2 ns 2 ns 2 ns 1 ns 1 ns 27

  27.   Kinematics   Kinematics             ORKA ORKA ORKA 28

  28. Scintillating Fiber Target E949 3.1 m long, single ended readout ORKA 1 m long, double ended readout, SiPMs Acceptance Increase: 1.06±0.06   Beam Beam K  MPPC MPPC Instrumentation Instrumentation Instrumentation Instrumentation Target Fibers K  K  Target Target 29

  29. Photon Veto Improvements E949 1 7.3 Radiation Lengths ORKA ORKA 23 0 R di ti 23.0 Radiation Lengths L th Acceptance Increase : 1.65  0.39  0.18 Estimate based on simulated KOPIO PV performance Adjusted to agree with E949 PV efficiency. Shashlyk – Calorimeter Candidate for ORKA 30

  30. Shashlyk Beam Measurements Simulation : Combined Energy Resolution 2.7%     E GeV ( )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend