orbit dirichlet series and multiset permutations
play

Orbit Dirichlet series and multiset permutations Angela Carnevale - PowerPoint PPT Presentation

Orbit Dirichlet series and multiset permutations Angela Carnevale Universitt Bielefeld (joint work with C. Voll) Orbit Dirichlet series Let X be a space and T : X X a map. For n N { x , T ( x ) , T 2 ( x ) , . . . , T n ( x ) = x } =


  1. Orbit Dirichlet series and multiset permutations Angela Carnevale Universität Bielefeld (joint work with C. Voll)

  2. Orbit Dirichlet series Let X be a space and T : X → X a map. For n ∈ N { x , T ( x ) , T 2 ( x ) , . . . , T n ( x ) = x } = closed orbit of length n O T ( n ) = number of closed orbits of length n under T . The orbit Dirichlet series of T is the Dirichlet generating series ∞ � O T ( n ) n − s , d T ( s ) = n = 1 where s is a complex variable. ◮ If O T ( n ) = 1 for all n ❀ d T ( s ) = ζ ( s ) ◮ For r ∈ N , if O T r ( n ) = a n ( Z r ) = number of index n subgroups of Z r r − 1 � ❀ d T r ( s ) = ζ ( s − i ) i = 0

  3. Products and periodic points n �→ O T ( n ) is multiplicative ❀ Orbit Dirichlet series satisfy an Euler product ∞ � � � O T ( p k ) p − ks d T ( s ) = d T , p ( s ) = p prime p prime k = 0 To find the orbit series of a product of maps, we first look at another sequence: � F T ( n ) = number of points of period n = d O T ( d ) d | n Möbius inversion gives � n � O T ( n ) = 1 � F T ( d ) µ n d d | n For any finite collection of maps T 1 , . . . , T r F T 1 × ... × T r ( n ) = F T 1 ( n ) · · · F T r ( n )

  4. Orbit series of products of maps Goal. For a partition λ = ( λ 1 , . . . , λ m ) , compute � d T λ ( s ) = d T λ 1 ×···× T λ m ( s ) = d T λ , p ( s ) , p prime where O T λ i ( n ) = number of index n subgroups of Z λ i . For i = 1, . . . , m � λ i − 1 + k � � λ i + k � O T λ i ( p k ) = F T λ i ( p k ) = and k k p p � m � � λ i + k � ∞ � � � p − k − ks . ❀ d T λ ( s ) = k p p k = 0 i = 1

  5. Multiset permutations m � Let λ = ( λ 1 , . . . , λ m ) be a partition of N = λ i . i = 1 S λ = set of all multiset permutations on { 1 , . . . , 1 , 2 , . . . , 2 , . . . , m , . . . , m } . � �� � � �� � � �� � λ 1 λ 2 λ m ◮ λ = ( 1, . . . , 1 ) = ( 1 m ) ❀ S m = permutations of the set { 1 , 2 , . . . , m } , ◮ λ = ( 2, 1 ) ❀ S λ = { 112 , 121 , 211 } For w ∈ S λ , w = w 1 . . . w N Des ( w ) = { i ∈ [ N − 1 ] | w i > w i + 1 } , descent set of w des ( w ) = | Des ( w ) | , number of descents � maj ( w ) = i , major index i ∈ Des ( w ) ◮ λ = ( 3, 2, 1 ) , w = 121231 ∈ S λ ❀ Des ( w ) = { 2, 5 } , des ( w ) = 2 and maj ( w ) = 7.

  6. Euler-Mahonian distribution and orbit series Let λ = ( λ 1 , . . . , λ m ) be a partition of N = � λ i � x des ( w ) q maj ( w ) ∈ Z [ x , q ] C λ ( x , q ) = w ∈ S λ Theorem (MacMahon 1916) � m � � λ i + k � ∞ � � C λ ( x , q ) x k = . � N k i = 0 ( 1 − xq i ) q k = 0 i = 1 Theorem (C.-Voll 2016) � w ∈ S λ p (− 1 − s ) des ( w )+ maj ( w ) C λ ( p − 1 − s , p ) � � d T λ ( s ) = = . � N � N i = 1 ( 1 − p i − 1 − s ) i = 1 ( 1 − p i − 1 − s ) p prime p prime

  7. Example: λ = ( 1 m ) S ( 1 m ) = S m = symmetric group on n letters, C ( 1 m ) ( x , q ) = Carlitz’s q -Eulerian polynomial, � � j ∈ Des ( w ) p j − 1 − s C ( 1 m ) ( p − 1 − s , p ) w ∈ S m d T ( 1 m ) , p ( s ) = i = 1 ( 1 − p i − 1 − s ) = � m � m i = 1 ( 1 − p i − 1 − s ) � m � � p i − 1 − s 1 � = 1 − p i − 1 − s . 1 − p m − 1 − s I I ⊆ [ m − 1 ] i ∈ I Is an istance of an " Igusa function " ❀ d T ( 1 m ) , p ( s ) | p → p − 1 = (− 1 ) m p m − 1 − s d T ( 1 m ) , p ( s ) .

  8. Local functional equations λ = ( λ 1 , . . . , λ m ) is a rectangle if λ 1 = · · · = λ m . Theorem (C.-Voll) 1. Let p be a prime. For all r , m ∈ N , d T ( rm ) , p ( s ) | p → p − 1 = (− 1 ) rm p m ( r + 1 2 ) − r − rs d T ( rm ) , p ( s ) . 2. If λ is not a rectangle, then d T λ , p ( s ) does not satisfy a functional equation of the form d T λ , p ( s ) | p → p − 1 = ± p d 1 − d 2 s d T λ , p ( s ) for d 1 , d 2 ∈ N 0 . Proof 1. Symmetry of C ( r m ) ( x , q ) + involution on S ( r m ) 2. C λ ( x , 1 ) has constant term 1. It is monic if and only if λ is a rectangle.

  9. Abscissae of convergence and growth Fact. For an Euler product � � � W ( p , p − s ) = c kj p k − js , c kj � = 0 p p ( k , j ) ∈ I � a + 1 � ◮ α = abscissa of convergence = max | ( a , b ) ∈ I b � a � ◮ Meromorphic continuation to { Re ( s ) > β } , β = max b | ( a , b ) ∈ I Theorem (C.-Voll) λ = ( λ 1 , . . . , λ m ) , N = � λ i i 1. α λ = abs. of conv. of d T λ ( s ) = N , meromorphic continuation to { Re ( s ) > N − 2 } 2. There exists a constant K λ ∈ R > 0 such that � O T λ ( ν ) ∼ K λ n N as n → ∞ . ν � n

  10. Abscissae of convergence and growth In our case � � � � � c kj p k − js = C λ ( p − 1 − s , p ) = p maj ( w )−( 1 + s ) des ( w ) p p ( k , j ) ∈ I λ p w ∈ S λ � � maj ( w )− des ( w )+ 1 ◮ α = max | w ∈ S λ des ( w ) � � maj ( w )− des ( w ) ◮ β = max | w ∈ S λ des ( w ) Theorem (C.-Voll) λ = ( λ 1 , . . . , λ m ) , N = � λ i i 1. α λ = abs. of conv. of d T λ ( s ) = N , meromorphic continuation to { Re ( s ) > N − 2 } 2. There exists a constant K λ ∈ R > 0 such that � O T λ ( ν ) ∼ K λ n N as n → ∞ . ν � n

  11. Abscissae of convergence and growth In our case � � � � � c kj p k − js = C λ ( p − 1 − s , p ) = p maj ( w )−( 1 + s ) des ( w ) p p p ( k , j ) ∈ I λ w ∈ S λ � � maj ( w )− des ( w )+ 1 ◮ α = max | w ∈ S λ = N − 1 des ( w ) � � maj ( w )− des ( w ) ◮ β = max | w ∈ S λ = N − 2 des ( w ) Proof λ = ( λ 1 , . . . , λ m ) , N = � λ i i � � 1 1. α λ = max N − 1, abscissa of convergence of = N . � N i = 1 ( 1 − p i − 1 − s ) 2. There exists a constant K λ ∈ R > 0 such that � O T λ ( ν ) ∼ K λ n N as n → ∞ ( Tauberian theorem ) . ν � n

  12. Natural boundaries: an example λ = ( 2, 1, 1 ) ❀ m = 3, N = 4, β = 2 C λ ( X , Y ) = 1 + 2 Y + 3 XY + 2 X 2 Y + XY 2 + 2 X 2 Y 2 + X 3 Y 2 ( a , b ) ∈ I λ ⇔ ∃ w ∈ S λ | des ( w ) = b and maj ( w ) = a + b 2 2 3 2 • = I λ

  13. Natural boundaries: an example λ = ( 2, 1, 1 ) ❀ m = 3, N = 4, β = 2 C λ ( X , Y ) = 1 + 2 Y + 3 XY + 2 X 2 Y + XY 2 + 2 X 2 Y 2 + X 3 Y 2 ( a , b ) ∈ I λ ⇔ ∃ w ∈ S λ | des ( w ) = b and maj ( w ) = a + b � C 1 λ ( X , Y ) = 1 + 2 X 2 Y , not "cyclotomic" ⇓ 2 Re ( s ) = β is a natural boundary β x 1 y = 2 3 2 • = I λ

  14. Natural boundaries: an example λ = ( λ 1 , . . . , λ m ) ❀ N = � i λ i , β = N − 2 � X maj ( w )− des ( w ) Y des ( w ) C λ ( X , Y ) = w ∈ S λ ( a , b ) ∈ I λ ⇔ ∃ w ∈ S λ | des ( w ) = b and maj ( w ) = a + b � C 1 λ ( X , Y ) = 1 + ( m − 1 ) X β Y ❀ Re ( s ) = β is a natural boundary β x 1 y = • = I λ

  15. Natural boundaries Theorem (C.-Voll) Assume that m > 2. Then the orbit Dirichlet series d T λ ( s ) has a natural boundary at { Re ( s ) = N − 2 } . For m = 2 and λ � = ( 1, 1 ) we conjecture that the same holds. We prove it subject to: Conjecture 1 For λ 1 > λ 2 � λ 1 �� λ 2 � λ 2 � (− 1 ) i C ( λ 1 , λ 2 ) (− 1, 1 ) = � = 0 i i i = 0 Conjecture 2 For λ = ( λ 1 , λ 1 ) , λ 1 ≡ 1 ( mod 2 ) C λ ( x , q ) = ( 1 + xq λ 1 ) C ′ λ ( x , q ) , where C ′ λ (− 1, 1 ) � = 0.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend