optimization repetition convexity
play

Optimization (Repetition) Convexity Convex set S x 1 + (1 ) x 2 - PDF document

Optimization (Repetition) Convexity Convex set S x 1 + (1 ) x 2 S , x 1 , x 2 S , [0 , 1]. Convex function f D f convex and f ( x 1 + (1 ) x 2 ) f ( x 1 ) + (1 ) f ( x 2 ),


  1. Optimization (Repetition) Convexity • Convex set S ⇔ λx 1 + (1 − λ ) x 2 ∈ S , ∀ x 1 , x 2 ∈ S , ∀ λ ∈ [0 , 1]. • Convex function f ⇔ D f convex and f ( λx 1 + (1 − λ ) x 2 ) ≤ λf ( x 1 ) + (1 − λ ) f ( x 2 ), ∀ x 1 , x 2 ∈ D f , ∀ λ ∈ [0 , 1]. • f convex ⇔ epi( f ) convex ⇔ f ( x + λd ) convex ∀ x, d : x + λd ∈ D f . Why convexity is good? • If f convex then – loc. min. ⇒ glob. min. – stat.point ⇒ glob. min. Note that glob. min. does not always exist for convex functions (i.e. y = e x ). • For convex min x ∈ S f : a is a glob. min. ⇔ ∇ f ( a ) T ( x − a ) ≥ 0, ∀ x ∈ S . • If S = { x ∈ X | g ( x ) ≤ 0 , h ( x ) = 0 } and X convex, f, g convex, h affine ⇒ convex problem. • For convex problems: – KKT ⇒ saddle point ⇒ glob. min. – Slater condition: ∃ x 0 ∈ S : g ( x 0 ) < 0 ⇒ no duality gap/saddle point. How to check that a set S is convex? • Picture ( n ≤ 3) or definition. • S 1 , S 2 convex ⇒ S 1 ∩ S 2 convex. • f convex ⇒ { x | f ( x ) ≤ const } convex. How to check that a function f is convex? • Graph ( n ≤ 2) or definition. • f 1 , f 2 convex ⇒ f 1 + f 2 convex and max { f 1 , f 2 } convex. • g convex ր and h convex ⇒ g ( h ( x )) convex. • g convex and h affine ⇒ g ( h ( x )) convex. • f convex ⇔ ∇ 2 f pos.-semidef.

  2. Positive-definite and positive-semidefinite • H pos.-def. ⇔ x T Hx > 0, ∀ x � = 0. • H pos.-def. ⇒ x T Hx + c T x + q strictly convex ⇒ ⇒ glob. min. unique (if exists). • H pos.-def. ⇒ − H ∇ f is a descent direction. • Loc. min. ⇒ ∇ f = 0, ∇ 2 f pos.-semidef. • ∇ f = 0, ∇ 2 f pos.-def. ⇒ loc. min. • ∇ 2 f pos.-semidef. on S ⇔ f convex on S . How to check positive-definiteness? • Sylvester: H pos.-def. ⇔ det( H k ) > 0, ∀ k = 1 , . . . , n . • H pos.-def. ⇔ all eigenvalues > 0. How to check positive-semidefiniteness? • Necessary: H pos.-semidef. ⇒ det( H k ) ≥ 0, ∀ k = 1 , . . . , n . • Sufficient: modified Sylvester det( H k ) > 0, ∀ k = 1 , . . . , n − 1 and det( H ) ≥ 0 ⇒ H pos.-semidef. • Completing the squares: H pos.-semidef. ⇔ f ( x ) = x T Hx = sum of squares. • H pos.-semidef. ⇔ H + ǫI pos.-def. ∀ ǫ > 0. • H pos.-semidef. ⇔ all eigenvalues ≥ 0. Factorizations • H = C T C ⇒ H pos.-semidef. • H = C T C and det( H ) � = 0 ⇒ H pos.-def. • Cholesky: H pos.-def. ⇔ H = LL T , L low-triang., det( L ) � = 0. • H pos.-def. ⇔ H = LDL T , L low. triang., L kk = 1, D = diag > 0.

  3. Search Dichotomous vs. Golden section: • GS: fewer function evaluations. • Unimodal ⇒ glob. min. Armijo: fast but inexact (normally used in multi-dim.) Newton vs. Modified Newton: • Newton: faster • Modified: always descent direction, better convergence Newton vs. Quasi-Newton: • Newton: uses 2d derivative • Quasi-Newton: only 1st derivative Conj. dir. vs. Quasi-Newton (DFP, BFGS): • CD: d new = −∇ f + βd old , β updates. • Quasi-Newton: d = − D ∇ f , D updates, lots of memory. Steepest decent vs. Conj. dir. • SD: zigzagging • CD: faster Convergence for quadratic functions: • Newton: in one step • CD = quasi-Newton: in n steps of inner loop (= one outer loop)

  4. LP and Duality • Particular case: – P: min c T x | Ax ≥ b, x ≥ 0 – D: max b T y | A T y ≤ c, y ≥ 0 • General case: – P: “=” in row k ⇔ D: y k free – P: x k free ⇔ D: “=” in row k • Easy to get from c T x − b T y = ( c − A T y ) T x + y T ( Ax − b ) ≥ 0 • CSP: “=” instead of “ ≥ ” above • Strong duality: finite min in P ⇒ finite max in D and min = max. • ¯ x primal feasible, ¯ y dual feasible + CSP ⇒ both are the optimal solutions. Constrained Optimization • Necessary: loc. min. ⇒ CQ point or KKT point • Sufficient: – KKT + convex ⇒ glob. min. – KKT + 2d order cond. ⇒ loc. min. – Saddle point ⇒ glob. min. • Numerical solution via penalty/barrier function methods. – Penalty: unfeasible approximations. – Barrier: feasible, cannot handle equalities. To check saddle point via Duality: P: min f ( x ) | x ∈ X, g ( x ) ≤ 0 , h ( x ) = 0. D: max Θ( u, v ) | u ≥ 0, where Θ( u, v ) = inf x ∈ X L ( x, u, v ). 1. Find Θ( u, v ) and get (if possible) the optimal x = x ( u, v ). 2. Find max Θ( u, v ) and get the optimal ¯ u , ¯ v . 3. Put ¯ x = x (¯ u, ¯ v ) (or calculate ¯ x as the optimal x on Step 1 for given ¯ u , ¯ v ). 4. If Θ(¯ u, ¯ v ) = f (¯ x ) then ¯ x is glob. min.

  5. The course contents: • Ch 2,3,9: Numerical methods (except Nelder-Mead simplex method). • Ch 4: Convex sets. • Ch 5: LP (except the Simplex method). • Ch 6: Convex functions (except Subgradient and Maximization). • Ch 7: KKT necessary/sufficient conditions (no Quadratic Programming). • Ch 8: Duality.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend