optimization of trusses under uncertain loads
play

Optimization of trusses under uncertain loads. Felipe Alvarez , - PowerPoint PPT Presentation

Optimization of trusses under uncertain loads. Felipe Alvarez , Miguel Carrasco , Benjamin Ivorra a Matem *Universidad de Chile, Departamento de Ingenier atica Universidad de los Andes, Departamento de Ingenier a


  1. Optimization of trusses under uncertain loads. Felipe Alvarez ∗ , Miguel Carrasco † , Benjamin Ivorra †† ıa Matem´ *Universidad de Chile, Departamento de Ingenier´ atica † Universidad de los Andes, Departamento de Ingenier´ ıa †† Universidad de Complutense de Madrid, Departamento de Matem´ aticas Aplicadas. Optimal design of trusses. – p. 1/4

  2. • Optimization of trusses • Standard minimum compliance truss design. • Instabilities and the standard multiload model. • Random Perturbations: Minimizing the expected compliance. • Numerical examples. • Random Perturbations: Minimizing the variance. • Numerical examples. Optimal design of trusses. – p. 2/4

  3. Optimization of trusses Optimal design of trusses. – p. 3/4

  4. Introduction • Definition. • Problem: find the best structure able to carry a external nodal force. • Constraints: mechanical equilibrium , total volume and others . . . • Minimize the compliance. Optimal design of trusses. – p. 4/4

  5. Minimum compliance truss design 1 2 f T u ( D ) min λ,u s.t. K ( λ ) u = f λ ∈ ∆ m 2 f T u is called Compliance . 1 Optimal design of trusses. – p. 5/4

  6. Mathematical formulation 1 2 f T u min • λ ∈ R m ; m number of bars. λ,u • n grades of freedom. s.t. K ( λ ) u = f • f ∈ R n nodal load vector. λ ∈ ∆ m • u ∈ R n nodal displacements. m • ∆ m = { λ ∈ R m | λ ≥ 0 , � λ i = 1 } . i =1 • K ( λ ) ∈ R n × n , stiffness matrix . Optimal design of trusses. – p. 6/4

  7. Stiffness Matrix m � K ( λ ) = λ i K i i =1 where K i = b i b T i ∈ R n × n K i is dyadic. Optimal design of trusses. – p. 7/4

  8. Stiffness Matrix m � K ( λ ) = λ i K i i =1 where K i = b i b T i ∈ R n × n K i is dyadic. √ E i γ i ∈ R n b i = l i • E i : Young modulus. • l i : length of bar i. • γ i : cosines/sines vector. Optimal design of trusses. – p. 7/4

  9. Ground structure approach 1.5 1 0.5 0 f −0.5 −1 0 1 2 3 4 5 6 Optimal design of trusses. – p. 8/4

  10. Ground structure approach 1.5 1 0.5 0 f −0.5 −1 0 1 2 3 4 5 6 1.5 1 0.5 0 f −0.5 −1 0 1 2 3 4 5 6 Optimal design of trusses. – p. 8/4

  11. Ground structure approach f Optimal design of trusses. – p. 9/4

  12. Ground structure approach f f • Nodal positions are fixed in the reference configuration. • We use a mesh full of nodes and bars. Optimal design of trusses. – p. 9/4

  13. Ground structure approach 3 2.5 2 1.5 Y 1 f 0.5 0 −0.5 −1 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 X Typically a large number of bar vanish at the optimum. Optimal design of trusses. – p. 10/4

  14. 1 2 f T u ( D ) min λ ∈ R m ,u ∈ R n s.t. K ( λ ) u = f λ ∈ ∆ m 2 f T u is independent of u satisfying K ( λ ) u = f. 1 Optimal design of trusses. – p. 11/4

  15. Minimax Formulation λ ∈ ∆ m { 1 2 f T u | K ( λ ) u = f } ( D ) min x ∈ R n { f T x − 1 2 x T K ( λ ) x } ( D ) λ ∈ ∆ m max min � (Minimax Theorem) 1 ≤ i ≤ m { 1 2 x T K i x − f T x } ( P ) x ∈ R n max min Optimal design of trusses. – p. 12/4

  16. Instabilities and the standard multiload model Optimal design of trusses. – p. 13/4

  17. Example The design problem ( D ) may produce unsatisfactory results in respect to mechanical stability (see Ben -Tal and Nemirovsky 1997) Optimal design of trusses. – p. 14/4

  18. Example The design problem ( D ) may produce unsatisfactory results in respect to mechanical stability (see Ben -Tal and Nemirovsky 1997) 4 6 5 1 2 3 Optimal design of trusses. – p. 14/4

  19. Example The design problem ( D ) may produce unsatisfactory results in respect to mechanical stability (see Ben -Tal and Nemirovsky 1997) 4 6 5 1 2 3 Optimal design of trusses. – p. 14/4

  20. Multiload model Standard multiload model k 1 � α j f jT u j min 2 λ ∈ R m j =1 s.t. K ( λ ) u j = f j , j = 1 , . . . , k λ ∈ ∆ m We minimize a weighted average of the compliances. Optimal design of trusses. – p. 15/4

  21. Multiload model Defining f = ( α 1 f 1 T , . . . , α k f kT ) T ∈ R n ( k +1) , ˆ K i = diag( α 1 K i , . . . , α k K i ) ∈ R n ( k +1) × n ( k +1) , ˆ m � ˆ λ i ˆ K ( λ ) = K i , i =1 Then multiload model can be written as ( D ). remark: ˆ K � = b i b T i . Optimal design of trusses. – p. 16/4

  22. Random Perturbations: Minimizing the expected compliance. Optimal design of trusses. – p. 17/4

  23. Random load model Let ξ ∈ R n be a perturbation on the load vector f.  if λ ∈ ∆ m and u ∈ R n such that 1 2 ( f + ξ ) T x   Ψ( ξ, λ ) = K ( λ ) u = f + ξ,   + ∞ otherwise Ψ: ( R n , B ( R n )) → ( R ∪ { + ∞} , ¯ B ( R )) Results to be proper, lower semicontinuous and convex. Optimal design of trusses. – p. 18/4

  24. Random load model For each λ ∈ ∆ m ( R ∪ { + ∞} , ¯ ( R n , B ( R n )) B ( R )) Ψ( · , λ ): → �→ Ψ( ξ, λ ) ξ is measurable. Optimal design of trusses. – p. 19/4

  25. Random load model P ) E ξ [Ψ( ξ, λ )] Minimum expected compliance design problem ( D ; min λ ∈ ∆ m We assume that ξ is a random variable corresponding to an uncertain nodal load perturbation ( R n , B ( R n )) (Ω , A ) → ξ : �→ ξ ( ω ) ω Optimal design of trusses. – p. 20/4

  26. Example: discrete perturbation P with finite support Sop( P ) = { ξ 1 , . . . , ξ k } . P ) 1. k 1 � α j f jT u j ( D ; min 2 λ ∈ R m j =1 s.t. K ( λ ) u j = f j , P ) is the standard multiload model where i = 1 , . . . , k P ( ξ = ξ j ) and f j = f + ξ j , j = 1 , . . . , k. λ ∈ ∆ m ( D ; α j = Optimal design of trusses. – p. 21/4

  27. Continuous case Optimal design of trusses. – p. 22/4

  28. Continuous case E ( ξ ) = 0 and Variance–covariance matrix Theorem 0.1. Let ξ : Ω → R n be a continuous random variable P ) is given by with mean vector Var( ξ ) = PP T , with P ∈ R n × k . P ) Then the corresponding minimum expected compliance design problem ( D ; 1 + 1 2 Trace( P T U ) 2 f T u ( D ; min λ ∈ R m � �� � � �� � mean load variance s.t. K ( λ ) u = f K ( λ ) U = P λ ∈ ∆ m Optimal design of trusses. – p. 23/4

  29. Continuous case Remark p j , j = 1 , . . . , k, columns of P Defining f = ( f T , p 1 T , . . . , p kT ) T ∈ R n ( k +1) , ˆ K i = diag( K i , K i , . . . , K i ) ∈ R n ( k +1) × n ( k +1) , ˆ m P ) may be written as a multiload model. � ˆ λ i ˆ K ( λ ) = K i , i =1 Then ( D ; Optimal design of trusses. – p. 24/4

  30. example Random multidimensional independent perturbation E ( ε j ) = 0 and Var( ε j ) = σ 2 ξ = � k j =1 ε j d j , where P ) d j ∈ R n , j . r 2 f T u + 1 1 � σ j d jT u j ( D ; min 2 λ ∈ R m j =1 s.t. K ( λ ) u = f K ( λ ) u j = σ j d j j = 1 , . . . , k λ ∈ ∆ m . Optimal design of trusses. – p. 25/4

  31. Numerical results Optimal design of trusses. – p. 26/4

  32. Toy example Toy example, Ben -Tal and Nemirowski 1997 1.5 1.5 4 5 6 1 1 0.5 0.5 0 0 1 2 3 −0.5 −0.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 1.5 1.5 (a) (b) 1 1 0.5 0.5 0 0 −0.5 −0.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 Toy example, Ben-Tal and Nemirowski 1997 – p. 27/4

  33. Problem compl. max min mean compl. compl. ∄ Standard + ∞ + ∞ single load (a) 0.025 0.053 0.013 (b) 0.023 0.051 0.012 Toy example, Ben -Tal and Nemirowski 1997 – p. 28/4

  34. Electricity mast Electricity mast, Achtziger et al. 1992 Electricity mast, Achtziger et al. 1992 – p. 29/4

  35. Electricity mast 15 15 15 10 10 10 5 5 5 0 0 0 −6 −4 −2 0 2 4 6 8 10 12 −6 −4 −2 0 2 4 6 8 10 12 −6 −4 −2 0 2 4 6 8 10 12 Electricity mast, Achtziger et al. 1992 – p. 30/4

  36. Dome Dome 3D – p. 31/4

  37. Dome Dome 3D – p. 32/4

  38. Dome Dome 3D – p. 33/4

  39. Random Perturbations: Minimizing the variance. Dome 3D – p. 34/4

  40. Stochastic model including variance E ξ [Ψ( ξ, λ )] + β Var[Ψ( ξ, λ )] . We consider min λ ∈ R m α Dome 3D – p. 35/4

  41. Stochastic model including variance E ξ [Ψ( ξ, λ )] + β Var[Ψ( ξ, λ )] We consider min λ ∈ R m α Theorem 0.2. ξ ∼ N (0 , PP T ) . Taking for simplicity α = 0 and P var ) min β = 1 . 1 � � Trace(( P T U ) 2 ) + 2 f T UU T f ( D ; 2 λ ∈ R m s.t. K ( λ ) u = f K ( λ ) U = P λ ∈ ∆ m Apparent harder to solve. Dome 3D – p. 36/4

  42. Michel 3D Michel 3D – p. 37/4

  43. Michel 3D Michel 3D – p. 38/4

  44. Michel 3D – p. 39/4

  45. Michel 3D – p. 40/4

  46. Michel 3D – p. 41/4

  47. Michel 3D – p. 42/4

  48. Michel 3D – p. 43/4

  49. Boxplot 2 1.5 1 0.5 Values 0 −0.5 −1 −1.5 −2 1 Column Number – p. 44/4 Figure 1: Boxplot representation

  50. Boxplot 120 110 100 90 80 Compliance 70 60 50 40 30 20 1−0 1−0.01 1−0.1 1−0.25 1−0.5 1−0.75 1−1 0.75−1 0.5−1 0.25−1 0.1−1 Coefficient values α − β – p. 45/4

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend