optimization of acquisition geometry for intra operative
play

Optimization of Acquisition Geometry for Intra-operative Tomographic - PowerPoint PPT Presentation

Optimization of Acquisition Geometry for Intra-operative Tomographic Imaging J. Vogel T. Reichl J. Gardiazabal N. Navab T. Lasser Computer-Aided Medical Procedures, Technische Universit at M unchen Institute of Biomathematics and


  1. Optimization of Acquisition Geometry for Intra-operative Tomographic Imaging J. Vogel T. Reichl J. Gardiazabal N. Navab T. Lasser Computer-Aided Medical Procedures, Technische Universit¨ at M¨ unchen Institute of Biomathematics and Biometry, HelmholtzZentrum M¨ unchen MICCAI October 4, 2012 1

  2. Motivation ◮ Enable flexible intra-operative functional imaging ◮ Identify cancer tissue during surgery using radioactive tracer 2

  3. SPECT 3

  4. SPECT 3

  5. SPECT 3

  6. SPECT 3

  7. SPECT 3

  8. SPECT 3

  9. SPECT 3

  10. Diagnostic SPECT 4

  11. Freehand SPECT SurgicEye Press Picture T. Wendler et al., Eur J Nucl Med Mol Imaging 37 (8), 2010 5

  12. Freehand SPECT Courtesy of Aslı Okur & Thomas Wendler T. Wendler et al., Eur J Nucl Med Mol Imaging 37 (8), 2010 5

  13. Intra-Op Tomographic Imaging Robotic SPECT C-Arm CT Siemens Press Picture ◮ Problem: Find optimal and reproducible trajectories! Y. Murayama et al., Neurosurgery 68, 2011 6

  14. Sneak Peek ◮ Optimize sensor trajectory for tomographic reconstruction ◮ Directly use mathematical framework ◮ Control robotic arm accordingly 7

  15. Algebraic Reconstruction: Discretized Signal f = � f : Ω ⊂ R 3 → R f ≈ � i x i · b i 8

  16. Algebraic Reconstruction: Measurement Model m j ≈ M j ( � M j : (Ω → R ) → R i x i · b i ) m j = M j ( f ) � m j = f ( x ) d x L j 9

  17. Algebraic Reconstruction: Measurement Model m j ≈ M j ( � M j : (Ω → R ) → R i x i · b i ) = � m j = M j ( f ) i x i · M j ( b i ) � �� � � =: a ji m j = f ( x ) d x L j 9

  18. Algebraic Reconstruction: Linear System � a T m j = j , x �  — a 1 —      = m    x  10

  19. Algebraic Reconstruction: Linear System � a T m j = j , x �   — a 1 —   — a 2 —   = m   x   10

  20. Algebraic Reconstruction: Linear System � a T m j = j , x �   — a 1 —   — a 2 —   = m   x  — a 3 —  . . . = A · x ◮ A contains the geometry, m the measurements ◮ Kernel and rank of A are quality indicators 10

  21. Singular Value Spectrum of a System Matrix 1 10   0 10 σ 1   V T A = U  σ 2  singular value intensity −1 10 ... � �� � −2 10 =: S � −3 10 η ( A ) = i σ i −4 10 singular value index ◮ SVD is slow T. Lasser et al., Medical Image Analysis 11 (4), 2007 P. C. Hansen et al., Johns Hopkins University Press 2012 11

  22. Pivoted QR Decomposition 1 10   0 10 r 11 r 12 · · ·   r 22 · · · P T A = Q   singular value intensity −1 10 ... � �� � −2 10 =: R � −3 10 η ( A ) = � diag ( R ) � ℓ 1 = i | r ii | −4 10 singular value index ◮ Pivoted QR is considerably faster P. C. Hansen et al., Johns Hopkins University Press 2012 T. Lasser et al., Medical Image Analysis 11 (4), 2007 12

  23. Robot Control: Overview ◮ Find trajectory maximizing cost function η ◮ Constrain motion to bounding surface possible next destinations current destination p i current location 13

  24. Robot Control: Overview ◮ Find trajectory maximizing cost function η ◮ Constrain motion to bounding surface possible next destinations currently optimal η current destination p i current location 13

  25. Robot Control: Overview ◮ Find trajectory maximizing cost function η ◮ Constrain motion to bounding surface possible next destinations currently optimal η current destination p i current location 13

  26. Robot Control: Overview ◮ Find trajectory maximizing cost function η ◮ Constrain motion to bounding surface possible next destinations currently optimal η current destination p i current location 13

  27. Robot Control: Overview ◮ Find trajectory maximizing cost function η ◮ Constrain motion to bounding surface possible next destinations currently optimal η current destination p i current location 13

  28. Robot Control: Overview ◮ Find trajectory maximizing cost function η ◮ Constrain motion to bounding surface current dest. p i +1 current location p i 13

  29. Robot Control: Exploring the Surface bounding triangle-mesh basis functions b i 14

  30. Robot Control: Exploring the Surface � � A i random pose, evaluate η — a ∗ — ◮ Predicted matrix A i after robot reaches current destination p i 14

  31. Robot Control: Exploring the Surface high need for measurement highest energy next destination low need 14

  32. Real-Time Implementation ◮ Small voxel basis (10 × 10 × 7 = 700 basis functions) for optimization (finer for actual reconstruction) ◮ Mesh of 200–450 triangles, evaluated in parallel ◮ In-place decomposition using LAPACK’s SGEQP3 15

  33. Experiments: Simulation grid expert random robot−1 robot−2 deviation of major hotspot 0 500 1000 1500 2000 2500 3000 3500 4000 number of measurements used for reconstruction Alexander Hartl contributed. 16

  34. Experiments: Simulation grid expert random robot−1 robot−2 deviation of major hotspot 0 500 1000 1500 2000 2500 3000 3500 4000 number of measurements used for reconstruction Alexander Hartl contributed. 16

  35. Experiments: Simulation grid expert random robot−1 robot−2 deviation of major hotspot 0 500 1000 1500 2000 2500 3000 3500 4000 number of measurements used for reconstruction Alexander Hartl contributed. 16

  36. Experiments: Simulation grid expert random robot−1 robot−2 deviation of major hotspot 0 500 1000 1500 2000 2500 3000 3500 4000 number of measurements used for reconstruction Alexander Hartl contributed. 16

  37. Experiments: Real World Setup Result 17

  38. Conclusion ◮ Sensor trajectory optimization for tomographic reconstruction ◮ General approach directly using the mathematical framework ◮ Real-time implementation available 18

  39. Acknowledgements ◮ DFG SFB 824 ◮ DFG Cluster of Excellence MAP ◮ European Union FP7 grant N o 25698 ◮ Looking forward to meet you at our poster ( Th-2-AG-01 ), today 3:00 – 4:30 pm 19

  40. Singular Value Spectrum: Sample Cases 1 10 0 10 singular value intensity −1 10 −2 10 −3 10 −4 10 singular value index 700 basis functions, 522 measurements, case id 94 21

  41. Singular Value Spectrum: Sample Cases 1 10 0 10 singular value intensity −1 10 −2 10 −3 10 −4 10 singular value index 700 basis functions, 522 measurements, case id 171 21

  42. Singular Value Spectrum: Sample Cases 1 10 0 10 singular value intensity −1 10 −2 10 −3 10 −4 10 singular value index 700 basis functions, 853 measurements, case id 190 21

  43. Singular Value Spectrum: Sample Cases 1 10 0 10 singular value intensity −1 10 −2 10 −3 10 −4 10 singular value index 700 basis functions, 853 measurements, case id 249 21

  44. Singular Value Spectrum: Sample Cases 1 10 0 10 singular value intensity −1 10 −2 10 −3 10 −4 10 singular value index 700 basis functions, 939 measurements, case id 167 21

  45. Singular Value Spectrum: Sample Cases 1 10 0 10 singular value intensity −1 10 −2 10 −3 10 −4 10 singular value index 700 basis functions, 939 measurements, case id 233 21

  46. SVD vs. QR Spectra: Sample Cases 1 10 0 10 singular value intensity −1 10 −2 10 −3 10 −4 10 singular value index 700 basis functions, 522 measurements, case id 94 23

  47. SVD vs. QR Spectra: Sample Cases 1 10 0 10 singular value intensity −1 10 −2 10 −3 10 −4 10 singular value index 700 basis functions, 522 measurements, case id 94 23

  48. SVD vs. QR Spectra: Sample Cases 1 10 0 10 singular value intensity −1 10 −2 10 −3 10 −4 10 singular value index 700 basis functions, 853 measurements, case id 190 23

  49. SVD vs. QR Spectra: Sample Cases 1 10 0 10 singular value intensity −1 10 −2 10 −3 10 −4 10 singular value index 700 basis functions, 853 measurements, case id 190 23

  50. SVD vs. QR Spectra: Sample Cases 1 10 0 10 singular value intensity −1 10 −2 10 −3 10 −4 10 singular value index 700 basis functions, 939 measurements, case id 167 23

  51. SVD vs. QR Spectra: Sample Cases 1 10 0 10 singular value intensity −1 10 −2 10 −3 10 −4 10 singular value index 700 basis functions, 939 measurements, case id 167 23

  52. SVD vs. QR Spectra: Random Paths SVD QR 0.25 0.2 energy 0.15 0.1 0.05 0 0 10 20 30 40 50 60 70 80 90 100 iterations 25

  53. SVD vs. QR Spectra: Random Paths SVD QR 0.25 0.2 energy 0.15 0.1 0.05 0 0 10 20 30 40 50 60 70 80 90 100 iterations 25

  54. SVD vs. QR Spectra: Random Paths SVD QR 0.25 0.2 energy 0.15 0.1 0.05 0 0 10 20 30 40 50 60 70 80 90 100 iterations 25

  55. SVD vs. QR Spectra: Random Paths SVD QR 0.25 0.2 energy 0.15 0.1 0.05 0 0 10 20 30 40 50 60 70 80 90 100 iterations 25

  56. Robot Control: Correlation Path – Energy 27

  57. Robot Control: Correlation Path – Energy 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend