optimization and simulation
play

Optimization and Simulation Drawing from distributions Michel - PowerPoint PPT Presentation

Optimization and Simulation Drawing from distributions Michel Bierlaire Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique F ed erale de Lausanne M. Bierlaire (TRANSP-OR ENAC


  1. Optimization and Simulation Drawing from distributions Michel Bierlaire Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique F´ ed´ erale de Lausanne M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 1 / 51

  2. Discrete distributions Outline Discrete distributions 1 Continuous distributions 2 Transforming draws 3 Monte-Carlo integration 4 Summary 5 Appendix 6 M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 2 / 51

  3. Discrete distributions Discrete distributions Let X be a discrete r.v. with pmf: P ( X = x i ) = p i , i = 0 , . . . , where � i p i = 1. The support can be finite or infinite. The following algorithm generates draws from this distribution Inverse transform method 1 Let r be a draw from U (0 , 1). 2 Initialize k = 0, p = 0. 3 p = p + p k . 4 If r < p , set X = x k and stop. 5 Otherwise, set k = k + 1 and go to step 3. M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 3 / 51

  4. Discrete distributions Inverse Transform Method: illustration 0 0 . 24 0 . 66 0 . 77 1 p 1 = 0 . 24 p 2 = 0 . 42 p 3 = 0 . 11 p 4 = 0 . 23 M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 4 / 51

  5. Discrete distributions Discrete distributions Acceptance-rejection Attributed to von Neumann. Mostly useful with continuous distributions. We want to draw from X with pmf p i . We know how to draw from Y with pmf q i . Define a constant c ≥ 1 such that p i ≤ c ∀ i s.t. p i > 0 . q i Algorithm 1 Draw y from Y 2 Draw r from U (0 , 1) 3 If r < p y cq y , return x = y and stop. Otherwise, start again. M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 5 / 51

  6. Discrete distributions Acceptance-rejection: analysis Probability to be accepted during a given iteration P ( Y = y , accepted) = P ( Y = y ) P (accepted | Y = y ) = q y p y / cq y p y = c Probability to be accepted � P (accepted) = y P (accepted | Y = y ) P ( Y = y ) � p y = cq y q y y = 1 / c . Probability to draw x at iteration n (1 − 1 c ) n − 1 p x P ( X = x | n ) = c M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 6 / 51

  7. Discrete distributions Acceptance-rejection: analysis + ∞ � P ( X = x ) = P ( X = x | n ) n =1 � � n − 1 p x + ∞ � 1 − 1 = c c n =1 c p x = c = p x . Reminder: geometric series + ∞ � 1 x n = 1 − x n =0 M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 7 / 51

  8. Discrete distributions Acceptance-rejection: analysis Remarks Average number of iterations: c The closer c is to 1, the closer the pmf of Y is to the pmf of X . M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 8 / 51

  9. Continuous distributions Outline Discrete distributions 1 Continuous distributions 2 Transforming draws 3 Monte-Carlo integration 4 Summary 5 Appendix 6 M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 9 / 51

  10. Continuous distributions Continuous distributions Inverse Transform Method Let X be a continuous r.v. with CDF F X ( ε ) Draw r from a uniform U (0 , 1) Generate F − 1 X ( r ). Motivation F X is monotonically increasing It implies that ε 1 ≤ ε 2 is equivalent to F X ( ε 1 ) ≤ F X ( ε 2 ). M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 10 / 51

  11. Continuous distributions Inverse Transform Method 1 F X ( ε ) 0 . 9 0 . 8 0 . 7 0 . 6 0 . 5 0 . 4 0 . 3 0 . 2 0 . 1 0 − 4 − 2 0 2 4 M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 11 / 51

  12. Continuous distributions Inverse Transform Method More formally Denote F U ( ε ) = ε the CDF of the r.v. U (0 , 1) Let G be the distribution of the r.v. F − 1 X ( U ) Pr( F − 1 G ( ε ) = X ( U ) ≤ ε ) Pr( F X ( F − 1 = X ( U )) ≤ F X ( ε )) = Pr( U ≤ F X ( ε )) = F U ( F X ( ε )) = F X ( ε ) M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 12 / 51

  13. Continuous distributions Inverse Transform Method Examples: let r be a draw from U (0 , 1) Name F X ( ε ) Draw 1 − e − ε / b Exponential( b ) − b ln r µ − σ ln( 1 Logistic( µ , σ ) 1 / (1 + exp( − ( ε − µ ) / σ )) r − 1) ( ε / σ ) n σ r 1 / n Power( n , σ ) Note The CDF is not always available (e.g. normal distribution). M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 13 / 51

  14. Continuous distributions Continuous distributions Rejection Method We want to draw from X with pdf f X . We know how to draw from Y with pdf f Y . Define a constant c ≥ 1 such that f X ( ε ) f Y ( ε ) ≤ c ∀ ε Algorithm 1 Draw y from Y 2 Draw r from U (0 , 1) 3 If r < f X ( y ) cf Y ( y ) , return x = y and stop. Otherwise, start again. M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 14 / 51

  15. Continuous distributions Rejection Method: example Draw from a normal distribution Let ¯ X ∼ N (0 , 1) and X = | ¯ X | 2 π e − ε 2 / 2 , 0 < ε < + ∞ 2 Probability density function: f X ( ε ) = √ Consider an exponential r.v. with pdf f Y ( ε ) = e − ε , 0 < ε < + ∞ Then f X ( ε ) 2 e ε − ε 2 / 2 f Y ( ε ) = √ 2 π The ratio takes its maximum at ε = 1, therefore � f X ( ε ) f Y ( ε ) ≤ f X (1) f Y (1) = 2 e / π ≈ 1 . 315 . √ e e ε − ε 2 / 2 = e ε − ε 2 2 = e − ( ε − 1)2 2 − 1 f X ( ε ) 1 Rejection method, with cf Y ( ε ) = 2 M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 15 / 51

  16. Continuous distributions Rejection Method: example Algorithm: draw from a normal 1 Draw r from U (0 , 1) 2 Let y = − ln(1 − r ) (draw from the exponential) 3 Draw s from U (0 , 1) 4 If s < e − ( y − 1)2 return x = y and go to step 5. Otherwise, go to step 2 1. 5 Draw t from U (0 , 1). 6 If t ≤ 0 . 5, return x . Otherwise, return − x . Note This procedure can be improved. See [Ross, 2006, Chapter 5]. M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 16 / 51

  17. Continuous distributions Draws from the exponential 9000 Exponential 8000 7000 6000 5000 4000 3000 2000 1000 0 M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 17 / 51

  18. Continuous distributions Rejected draws 9000 Rejected draws 8000 7000 6000 5000 4000 3000 2000 1000 0 M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 18 / 51

  19. Continuous distributions Accepted draws 9000 Accepted draws 8000 7000 6000 5000 4000 3000 2000 1000 0 M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 19 / 51

  20. Continuous distributions Rejected and accepted draws 9000 Accepted draws Rejected draws 8000 7000 6000 5000 4000 3000 2000 1000 0 M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 20 / 51

  21. Continuous distributions Drawing from the standard normal distribution Accept/reject algorithm is not e ffi cient Polar method: no rejection (see appendix) M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 21 / 51

  22. Continuous distributions Transformations of standard normal If r is a draw from N (0 , 1), then s = br + a is a draw from N ( a , b 2 ) If r is a draw from N ( a , b 2 ), then e r is a draw from a log normal LN ( a , b 2 ) with mean e a +( b 2 / 2) and variance e 2 a + b 2 ( e b 2 − 1) M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 22 / 51

  23. Continuous distributions Multivariate normal If r 1 ,. . . , r n are independent draws from N (0 , 1), and ⎛ ⎞ r 1 ⎜ . ⎟ . r = ⎝ ⎠ . r n then s = a + Lr is a vector of draws from the n -variate normal N ( a , LL T ), where L is lower triangular, and LL T is the Cholesky factorization of the variance-covariance matrix M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 23 / 51

  24. Continuous distributions Multivariate normal Example: ⎛ ⎞ 0 0 ℓ 11 ⎝ ⎠ L = ℓ 21 ℓ 22 0 ℓ 31 ℓ 32 ℓ 33 = s 1 ℓ 11 r 1 s 2 = ℓ 21 r 1 + ℓ 22 r 2 s 3 = ℓ 31 r 1 + ℓ 32 r 2 + ℓ 33 r 3 M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 24 / 51

  25. Transforming draws Outline Discrete distributions 1 Continuous distributions 2 Transforming draws 3 Monte-Carlo integration 4 Summary 5 Appendix 6 M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 25 / 51

  26. Transforming draws Transforming draws Method Consider draws from the following distributions: normal: N (0 , 1) (draws denoted by ξ below) uniform: U (0 , 1) (draws denoted by r below) Draws R from other distributions are obtained from nonlinear transforms. Lognormal(a,b) � − (ln x − a ) 2 � 1 R = e a + b ξ f ( x ) = √ exp 2 b 2 xb 2 π M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 26 / 51

  27. Transforming draws Transforming draws Cauchy(a,b) � � � 2 �� − 1 � x − a � � π ( r − 1 f ( x ) = 1 + R = a + b tan 2) π b b χ 2 ( a ) ( a integer) a � f ( x ) = x ( a − 2) / 2 e − x / 2 ξ 2 R = j 2 a / 2 Γ ( a / 2) j =1 Erlang(a,b) ( b integer) b � f ( x ) = ( x / a ) b − 1 e − x / a R = − a ln r i a ( b − 1)! j =1 M. Bierlaire (TRANSP-OR ENAC EPFL) Optimization and Simulation 27 / 51

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend