optimal control in aerospace
play

Optimal control in aerospace elat 1 Emmanuel Tr 1 Sorbonne Universit - PowerPoint PPT Presentation

Optimal control in aerospace elat 1 Emmanuel Tr 1 Sorbonne Universit e (Paris 6), Labo. J.-L. Lions Mathematical Models and Methods in Earth and Space Sciences Rome Tor Vergata, March 2019 The orbit transfer problem with low thrust


  1. Optimal control in aerospace elat 1 Emmanuel Tr´ 1 Sorbonne Universit´ e (Paris 6), Labo. J.-L. Lions Mathematical Models and Methods in Earth and Space Sciences Rome Tor Vergata, March 2019

  2. The orbit transfer problem with low thrust Controlled Kepler equation q = − q µ | q | 3 + F ¨ m R 3 : position, F : thrust, m mass: q ∈ I m = − β | F | ˙ Maximal thrust constraint Orbit transfer 3 ) 1 / 2 � F max ≃ 0 . 1 N | F | = ( u 2 1 + u 2 2 + u 2 from an initial orbit to a given final orbit Controllability properties studied in B. Bonnard, J.-B. Caillau, E. Tr´ elat, Geometric optimal control of elliptic Keplerian orbits , Discrete Contin. Dyn. Syst. Ser. B 5 , 4 (2005), 929–956. B. Bonnard, L. Faubourg, E. Tr´ elat, M´ ecanique c´ eleste et contrˆ ole de syst` emes spatiaux , Math. & Appl. 51 , Springer Verlag (2006), XIV, 276 pages.

  3. The orbit transfer problem with low thrust Controlled Kepler equation q = − q µ | q | 3 + F ¨ m R 3 : position, F : thrust, m mass: q ∈ I m = − β | F | ˙ Maximal thrust constraint Orbit transfer 3 ) 1 / 2 � F max ≃ 0 . 1 N | F | = ( u 2 1 + u 2 2 + u 2 from an initial orbit to a given final orbit Controllability properties studied in B. Bonnard, J.-B. Caillau, E. Tr´ elat, Geometric optimal control of elliptic Keplerian orbits , Discrete Contin. Dyn. Syst. Ser. B 5 , 4 (2005), 929–956. B. Bonnard, L. Faubourg, E. Tr´ elat, M´ ecanique c´ eleste et contrˆ ole de syst` emes spatiaux , Math. & Appl. 51 , Springer Verlag (2006), XIV, 276 pages.

  4. Modelling in terms of an optimal control problem � q ( t ) � State: x ( t ) = ˙ q ( t ) Control: u ( t ) = F ( t ) Optimal control problem x ( t ) = f ( x ( t ) , u ( t )) , ˙ x ( t ) ∈ M , u ( t ) ∈ Ω x ( 0 ) = x 0 , x ( T ) = x 1 � T f 0 ( x ( t ) , u ( t )) dt min C ( T , u ) , where C ( T , u ) = 0

  5. Optimal control problem ˙ x ( t ) = f ( x ( t ) , u ( t )) , x ( 0 ) = x 0 ∈ M , u ( t ) ∈ Ω � T f 0 ( x ( t ) , u ( t )) dt x ( T ) = x 1 , min C ( T , u ) with C ( T , u ) = 0 Definition End-point mapping E x 0 , T : L ∞ ([ 0 , T ] , Ω) − → M u �− → x ( T ; x 0 , u )

  6. Optimal control problem ˙ x ( t ) = f ( x ( t ) , u ( t )) , x ( 0 ) = x 0 ∈ M , u ( t ) ∈ Ω � T f 0 ( x ( t ) , u ( t )) dt x ( T ) = x 1 , min C ( T , u ) with C ( T , u ) = 0 Definition End-point mapping E x 0 , T : L ∞ ([ 0 , T ] , Ω) − → M u �− → x ( T ; x 0 , u )

  7. Optimal control problem ˙ x ( t ) = f ( x ( t ) , u ( t )) , x ( 0 ) = x 0 ∈ M , u ( t ) ∈ Ω � T f 0 ( x ( t ) , u ( t )) dt x ( T ) = x 1 , min C ( T , u ) with C ( T , u ) = 0 Definition End-point mapping E x 0 , T : L ∞ ([ 0 , T ] , Ω) − → M u �− → x ( T ; x 0 , u ) − → Optimization problem min C ( T , u ) E x 0 , T ( u )= x 1

  8. Optimal control problem ˙ x ( t ) = f ( x ( t ) , u ( t )) , x ( 0 ) = x 0 ∈ M , u ( t ) ∈ Ω � T f 0 ( x ( t ) , u ( t )) dt x ( T ) = x 1 , min C ( T , u ) with C ( T , u ) = 0 Definition End-point mapping E x 0 , T : L ∞ ([ 0 , T ] , Ω) − → M u �− → x ( T ; x 0 , u ) Definition A control u (or the trajectory x u ( · ) ) is singular if dE x 0 , T ( u ) is not surjective.

  9. Lagrange multipliers (or KKT in general) A control u (or the trajectory x u ( · ) ) is singular if dE x 0 , T ( u ) is not surjective. Optimization problem min C ( T , u ) E x 0 , T ( u )= x 1 R m ) Lagrange multipliers (if Ω = I ∃ ( ψ, ψ 0 ) ∈ ( T ∗ ψ. dE x 0 , T ( u ) = − ψ 0 dC T ( u ) x ( T ) M × I R ) \ { ( 0 , 0 ) } | In terms of the Lagrangian L T ( u , ψ, ψ 0 ) = ψ. E x 0 , T ( u ) + ψ 0 C T ( u ) : ∂ L T ∂ u ( u , ψ, ψ 0 ) = 0 ψ 0 � = 0 ( → ψ 0 = − 1). - Normal multiplier: - Abnormal multiplier: ψ 0 = 0 R m ). ( ⇔ u singular, if Ω = I

  10. Pontryagin Maximum Principle Optimal control problem x ( t ) = f ( x ( t ) , u ( t )) , x ( 0 ) = x 0 ∈ M , ˙ u ( t ) ∈ Ω � T f 0 ( x ( t ) , u ( t )) dt x ( T ) = x 1 , min C ( T , u ) , where C ( T , u ) = 0 Pontryagin Maximum Principle Every minimizing trajectory x ( · ) is the projection of an extremal ( x ( · ) , p ( · ) , p 0 , u ( · )) solution of x = ∂ H p = − ∂ H H ( x , p , p 0 , u ) = max v ∈ Ω H ( x , p , p 0 , v ) ˙ ∂ p , ˙ ∂ x , where H ( x , p , p 0 , u ) = � p , f ( x , u ) � + p 0 f 0 ( x , u ) . An extremal is said normal whenever p 0 � = 0, and abnormal whenever p 0 = 0.

  11. Pontryagin Maximum Principle H ( x , p , p 0 , u ) = � p , f ( x , u ) � + p 0 f 0 ( x , u ) Pontryagin Maximum Principle Every minimizing trajectory x ( · ) is the projection of an extremal ( x ( · ) , p ( · ) , p 0 , u ( · )) solution of x = ∂ H p = − ∂ H H ( x , p , p 0 , u ) = max v ∈ Ω H ( x , p , p 0 , v ) ˙ ˙ ∂ p , ∂ x , ( p ( T ) , p 0 ) = ( ψ, ψ 0 ) up to (multiplicative) scaling . An extremal is said normal whenever p 0 � = 0, and abnormal whenever p 0 = 0. Singular trajectories coincide with projections of abnormal extremals s.t. ∂ H ∂ u = 0.

  12. Pontryagin Maximum Principle H ( x , p , p 0 , u ) = � p , f ( x , u ) � + p 0 f 0 ( x , u ) Pontryagin Maximum Principle Every minimizing trajectory x ( · ) is the projection of an extremal ( x ( · ) , p ( · ) , p 0 , u ( · )) solution of x = ∂ H p = − ∂ H H ( x , p , p 0 , u ) = max v ∈ Ω H ( x , p , p 0 , v ) ˙ ˙ ∂ p , ∂ x , ւ u ( t ) = u ( x ( t ) , p ( t )) � locally, e.g. under the strict Legendre assumption: ∂ 2 H � ∂ u 2 ( x , p , u ) negative definite

  13. Pontryagin Maximum Principle H ( x , p , p 0 , u ) = � p , f ( x , u ) � + p 0 f 0 ( x , u ) Pontryagin Maximum Principle Every minimizing trajectory x ( · ) is the projection of an extremal ( x ( · ) , p ( · ) , p 0 , u ( · )) solution of x = ∂ H p = − ∂ H H ( x , p , p 0 , u ) = max v ∈ Ω H ( x , p , p 0 , v ) ˙ ˙ ∂ p , ∂ x , տ ւ u ( t ) = u ( x ( t ) , p ( t )) � locally, e.g. under the strict Legendre assumption: ∂ 2 H � ∂ u 2 ( x , p , u ) negative definite

  14. Shooting method: Extremals z = ( x , p ) are solutions of Exponential mapping x = ∂ H ˙ ∂ p ( x , p ) , x ( 0 ) = x 0 , ( x ( T ) = x 1 ) exp x 0 ( t , p 0 ) = x ( t , x 0 , p 0 ) p = − ∂ H ˙ ∂ x ( x , p ) , p ( 0 ) = p 0 (extremal flow) where the optimal control maximizes the Hamiltonian. − → Shooting method: determine p 0 s.t. exp x 0 ( t , p 0 ) = x 1

  15. Shooting method: Extremals z = ( x , p ) are solutions of Exponential mapping x = ∂ H ˙ ∂ p ( x , p ) , x ( 0 ) = x 0 , ( x ( T ) = x 1 ) exp x 0 ( t , p 0 ) = x ( t , x 0 , p 0 ) p = − ∂ H ˙ ∂ x ( x , p ) , p ( 0 ) = p 0 (extremal flow) where the optimal control maximizes the Hamiltonian. − → Shooting method: determine p 0 s.t. exp x 0 ( t , p 0 ) = x 1 Remark - PMP = first-order necessary condition for optimality. - Necessary / sufficient (local) second-order conditions: conjugate points . → test if exp x 0 ( t , · ) is an immersion at p 0 . (fold singularity)

  16. There exist other numerical approaches to solve optimal control problems: direct methods: discretize the whole problem ⇒ finite-dimensional nonlinear optimization problem with constraints Hamilton-Jacobi methods. The shooting method is called an indirect method. In aerospace applications, shooting methods are privileged in general because of their numerical accuracy. BUT: difficult to make converge... (Newton method) To improve performance and facilitate applicability, PMP may be combined with: (1) continuation or homotopy methods (2) geometric control (3) dynamical systems theory E. Tr´ elat, Optimal control and applications to aerospace: some results and challenges , JOTA 2012.

  17. Minimal time orbit transfer Maximum Principle ⇒ the extremals ( x , p ) are solutions of x = ∂ H p = − ∂ H ˙ ˙ ∂ p , x ( 0 ) = x 0 , x ( T ) = x 1 , ∂ x , p ( 0 ) = p 0 , with an optimal control saturating the constraint: � u ( t ) � = F max . − → Shooting method: determine p 0 s.t. x ( T ; x 0 , p 0 ) = x 1 combined with a homotopy on F max �→ p 0 ( F max ) Heuristic on t f : t f ( F max ) · F max ≃ cste . (the optimal trajectories are ”straight lines”, Bonnard-Caillau 2009) (Caillau, Gergaud, Haberkorn, Martinon, Noailles, ...)

  18. Minimal time orbit transfer P 0 = 11625 km, | e 0 | = 0 . 75, i 0 = 7 o , P f = 42165 km F max = 6 Newton x 10 ! 4 1 2 0 q 3 −2 arcsh det( ! x) 30 0 40 20 10 20 0 0 −10 ! 1 0 100 200 300 400 500 −20 −20 t −30 −40 ! 3 −40 x 10 6 q 2 q 1 5 5 4 " n ! 1 3 20 2 0 1 q 2 q 3 0 0 0 100 200 300 400 500 t −20 −40 −5 −60 −40 −20 0 20 40 −50 0 50 q 1 q 2 Minimal time: 141.6 hours ( ≃ 6 days). First conjugate time: 522.07 hours.

  19. Continuation method Main tool used : continuation (homotopy) method → continuity of the optimal solution with respect to a parameter λ Theoretical framework (sensitivity analysis): F ( p 0 ( λ ) , λ ) = exp x 0 ,λ ( T , p 0 ( λ )) − x 1 = 0 Local feasibility is ensured: Global feasibility is ensured: in the absence of conjugate points in the absence of abnormal minimizers ↓ ↓ Numerical test of Jacobi fields True for generic systems having more than 3 controls (Chitour Jean Tr´ (Bonnard Caillau Tr´ elat, COCV 2007) elat, JDG 2006)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend