optimal and adaptive filtering
play

Optimal and Adaptive Filtering Murat ney M.Uney@ed.ac.uk Institute - PowerPoint PPT Presentation

Optimal and Adaptive Filtering Murat ney M.Uney@ed.ac.uk Institute for Digital Communications (IDCOM) 20/07/2015 Murat ney (IDCOM) Optimal and Adaptive Filtering 20/07/2015 1 / 62 Table of Contents Optimal Filtering 1 Optimal filter


  1. Optimal and Adaptive Filtering Murat Üney M.Uney@ed.ac.uk Institute for Digital Communications (IDCOM) 20/07/2015 Murat Üney (IDCOM) Optimal and Adaptive Filtering 20/07/2015 1 / 62

  2. Table of Contents Optimal Filtering 1 Optimal filter design Application examples Optimal solution: Wiener-Hopf equations Example: Wiener equaliser Adaptive filtering 2 Introduction Recursive Least Squares Adaptation Least Mean Square Algorithm Applications Optimal signal detection 3 Summary 4 Murat Üney (IDCOM) Optimal and Adaptive Filtering 20/07/2015 2 / 62

  3. Optimal Filtering Optimal filter design Optimal filter design Observation Estimation sequence Linear time invariant system Figure 1: Optimal filtering scenario. y ( n ) : Observation related to a signal of interest x ( n ) . h ( n ) : The impulse response of an LTI estimator. Murat Üney (IDCOM) Optimal and Adaptive Filtering 20/07/2015 3 / 62

  4. Optimal Filtering Optimal filter design Optimal filter design Observation Estimation sequence Linear time invariant system Figure 1: Optimal filtering scenario. y ( n ) : Observation related to a signal of interest x ( n ) . h ( n ) : The impulse response of an LTI estimator. Find h ( n ) with the best error performance: e ( n ) = x ( n ) − ˆ x ( n ) = x ( n ) − h ( n ) ∗ y ( n ) The error performance is measured by the mean squared error (MSE) � ( e ( n )) 2 � ξ = E . Murat Üney (IDCOM) Optimal and Adaptive Filtering 20/07/2015 3 / 62

  5. Optimal Filtering Optimal filter design Optimal filter design Observation Estimation sequence Linear time invariant system Figure 2: Optimal filtering scenario. The MSE is a function of h ( n ) , i.e., h = [ · · · , h ( − 2 ) , h ( − 1 ) , h ( 0 ) , h ( 1 ) , h ( 2 ) , · · · ] � ( e ( n )) 2 � � ( x ( n ) − h ( n ) ∗ y ( n )) 2 � ξ ( h ) = E = E . Murat Üney (IDCOM) Optimal and Adaptive Filtering 20/07/2015 4 / 62

  6. Optimal Filtering Optimal filter design Optimal filter design Observation Estimation sequence Linear time invariant system Figure 2: Optimal filtering scenario. The MSE is a function of h ( n ) , i.e., h = [ · · · , h ( − 2 ) , h ( − 1 ) , h ( 0 ) , h ( 1 ) , h ( 2 ) , · · · ] � ( e ( n )) 2 � � ( x ( n ) − h ( n ) ∗ y ( n )) 2 � ξ ( h ) = E = E . Thus, optimal filtering problem is h opt = arg min h ξ ( h ) Murat Üney (IDCOM) Optimal and Adaptive Filtering 20/07/2015 4 / 62

  7. Optimal Filtering Application examples Application examples 1) Prediction, interpolation and smoothing of signals Murat Üney (IDCOM) Optimal and Adaptive Filtering 20/07/2015 5 / 62

  8. Optimal Filtering Application examples Application examples 1) Prediction, interpolation and smoothing of signals (a) d = 1 (b) d = − 1 (c) d = − 1 / 2 ◮ Linear predictive coding (LPC) in speech processing. Murat Üney (IDCOM) Optimal and Adaptive Filtering 20/07/2015 6 / 62

  9. Optimal Filtering Application examples Application examples 2) System identification Figure 3: System identification using a training sequence t ( n ) from an ergodic and stationary ensemble. ◮ Echo cancellation in full duplex data transmission. Murat Üney (IDCOM) Optimal and Adaptive Filtering 20/07/2015 7 / 62

  10. Optimal Filtering Application examples Application examples 3) Inverse System identification Figure 4: Inverse system identification using x ( n ) as a training sequence. ◮ Channel equalisation in digital communication systems. Murat Üney (IDCOM) Optimal and Adaptive Filtering 20/07/2015 8 / 62

  11. Optimal Filtering Optimal solution: Wiener-Hopf equations Optimal solution: Normal equations � ( e ( n )) 2 � Consider the MSE ξ ( h ) = E The optimal filter satisfies ∇ ξ ( h ) | h opt = 0 . Equivalently, for all j = . . . , − 2 , − 1 , 0 , 1 , 2 , . . . � � ∂ξ 2 e ( n ) ∂ e ( n ) ∂ h ( j ) = E ∂ h ( j ) � � � x ( n ) − � ∞ � 2 e ( n ) ∂ i = −∞ h ( i ) y ( n − i ) = E ∂ h ( j ) � � 2 e ( n ) ∂ ( − h ( j ) y ( n − j )) = E ∂ h ( j ) = − 2 E [ e ( n ) y ( n − j )] Murat Üney (IDCOM) Optimal and Adaptive Filtering 20/07/2015 9 / 62

  12. Optimal Filtering Optimal solution: Wiener-Hopf equations Optimal solution: Normal equations � ( e ( n )) 2 � Consider the MSE ξ ( h ) = E The optimal filter satisfies ∇ ξ ( h ) | h opt = 0 . Equivalently, for all j = . . . , − 2 , − 1 , 0 , 1 , 2 , . . . � � ∂ξ 2 e ( n ) ∂ e ( n ) ∂ h ( j ) = E ∂ h ( j ) � � � x ( n ) − � ∞ � 2 e ( n ) ∂ i = −∞ h ( i ) y ( n − i ) = E ∂ h ( j ) � � 2 e ( n ) ∂ ( − h ( j ) y ( n − j )) = E ∂ h ( j ) = − 2 E [ e ( n ) y ( n − j )] Hence, the optimal filter solves the “normal equations” E [ e ( n ) y ( n − j )] = 0 , j = . . . , − 2 , − 1 , 0 , 1 , 2 , . . . Murat Üney (IDCOM) Optimal and Adaptive Filtering 20/07/2015 9 / 62

  13. Optimal Filtering Optimal solution: Wiener-Hopf equations Optimal solution: Wiener-Hopf equations The error of h opt is orthogonal to its observations, i.e., for all j ∈ Z E [ e opt ( n ) y ( n − j )] = 0 which is known as “the principle of orthogonality”. Murat Üney (IDCOM) Optimal and Adaptive Filtering 20/07/2015 10 / 62

  14. Optimal Filtering Optimal solution: Wiener-Hopf equations Optimal solution: Wiener-Hopf equations The error of h opt is orthogonal to its observations, i.e., for all j ∈ Z E [ e opt ( n ) y ( n − j )] = 0 which is known as “the principle of orthogonality”. Furthermore, �� � � ∞ � E [ e opt ( n ) y ( n − j )] = E x ( n ) − h opt ( i ) y ( n − i ) y ( n − j ) i = −∞ ∞ � h opt ( i ) E [ y ( n − i ) y ( n − j )] = 0 = E [ x ( n ) y ( n − j )] − i = −∞ Murat Üney (IDCOM) Optimal and Adaptive Filtering 20/07/2015 10 / 62

  15. Optimal Filtering Optimal solution: Wiener-Hopf equations Optimal solution: Wiener-Hopf equations The error of h opt is orthogonal to its observations, i.e., for all j ∈ Z E [ e opt ( n ) y ( n − j )] = 0 which is known as “the principle of orthogonality”. Furthermore, �� � � ∞ � E [ e opt ( n ) y ( n − j )] = E x ( n ) − h opt ( i ) y ( n − i ) y ( n − j ) i = −∞ ∞ � h opt ( i ) E [ y ( n − i ) y ( n − j )] = 0 = E [ x ( n ) y ( n − j )] − i = −∞ Result (Wiener-Hopf equations) ∞ � h opt ( i ) r yy ( i − j ) = r xy ( j ) i = −∞ Murat Üney (IDCOM) Optimal and Adaptive Filtering 20/07/2015 10 / 62

  16. Optimal Filtering Optimal solution: Wiener-Hopf equations The Wiener filter Wiener-Hopf equations can be solved indirectly, in the complex spectral domain: h opt ( n ) ∗ r yy ( n ) = r xy ( n ) ↔ H opt ( z ) P yy ( z ) = P xy ( z ) Murat Üney (IDCOM) Optimal and Adaptive Filtering 20/07/2015 11 / 62

  17. Optimal Filtering Optimal solution: Wiener-Hopf equations The Wiener filter Wiener-Hopf equations can be solved indirectly, in the complex spectral domain: h opt ( n ) ∗ r yy ( n ) = r xy ( n ) ↔ H opt ( z ) P yy ( z ) = P xy ( z ) Result (The Wiener filter) H opt ( z ) = P xy ( z ) P yy ( z ) Murat Üney (IDCOM) Optimal and Adaptive Filtering 20/07/2015 11 / 62

  18. Optimal Filtering Optimal solution: Wiener-Hopf equations The Wiener filter Wiener-Hopf equations can be solved indirectly, in the complex spectral domain: h opt ( n ) ∗ r yy ( n ) = r xy ( n ) ↔ H opt ( z ) P yy ( z ) = P xy ( z ) Result (The Wiener filter) H opt ( z ) = P xy ( z ) P yy ( z ) The optimal filter has an infinite impulse response (IIR), and, is non-causal, in general. Murat Üney (IDCOM) Optimal and Adaptive Filtering 20/07/2015 11 / 62

  19. Optimal Filtering Optimal solution: Wiener-Hopf equations Causal Wiener filter We project the unconstrained solution H opt ( z ) onto the set of causal and stable IIR filters by a two step procedure: First, factorise P yy ( z ) into causal (right sided) Q yy ( z ) , and anti-causal (left sided) parts Q ∗ yy ( 1 / z ∗ ) , i.e., P yy ( z ) = σ 2 yy ( 1 / z ∗ ) . y Q yy ( z ) Q ∗ Select the causal (right sided) part of P xy ( z ) / Q ∗ yy ( 1 / z ∗ ) . Result (Causal Wiener filter) � � 1 P xy ( z ) H + opt ( z ) = σ 2 yy ( 1 / z ∗ ) Q ∗ y Q yy ( z ) + Murat Üney (IDCOM) Optimal and Adaptive Filtering 20/07/2015 12 / 62

  20. Optimal Filtering Optimal solution: Wiener-Hopf equations FIR Wiener-Hopf equations received sequence { y ( n ) } z -1 z -1 z -1 . . . h h h 0 1 N -1 Σ output { } x ( n ) Figure 5: A finite impulse response (FIR) estimator. Wiener-Hopf equations for the FIR optimal filter of N taps: Result (FIR Wiener-Hopf equations) � N − 1 i = 0 h opt ( i ) r yy ( i − j ) = r xy ( j ) , for j = 0 , 1 , ..., N − 1 . Murat Üney (IDCOM) Optimal and Adaptive Filtering 20/07/2015 13 / 62

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend