optimal and adaptive filtering
play

Optimal and Adaptive Filtering Murat ney M.Uney@ed.ac.uk Institute - PowerPoint PPT Presentation

Optimal and Adaptive Filtering Murat ney M.Uney@ed.ac.uk Institute for Digital Communications (IDCOM) 26/06/2017 Murat ney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 1 / 69 Table of Contents Optimal Filtering 1 Optimal filter


  1. Optimal and Adaptive Filtering Murat Üney M.Uney@ed.ac.uk Institute for Digital Communications (IDCOM) 26/06/2017 Murat Üney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 1 / 69

  2. Table of Contents Optimal Filtering 1 Optimal filter design Application examples Optimal solution: Wiener-Hopf equations Example: Wiener equaliser Adaptive filtering 2 Introduction Recursive Least Squares Adaptation Least Mean Square Algorithm Applications Optimal signal detection 3 Application examples and optimal hypothesis testing Additive white and coloured noise Summary 4 Murat Üney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 2 / 69

  3. Optimal Filtering Optimal filter design Optimal filter design Observation Estimation sequence Linear time invariant system Figure 1: Optimal filtering scenario. y ( n ) : Observation related to a stationary signal of interest x ( n ) . h ( n ) : The impulse response of an LTI estimator. x ( n ) : Estimate of x ( n ) given by ˆ ∞ � ˆ x ( n ) = h ( n ) ∗ y ( n ) = h ( i ) y ( n − i ) . i = −∞ Murat Üney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 3 / 69

  4. Optimal Filtering Optimal filter design Optimal filter design Observation Estimation sequence Linear time invariant system Figure 1: Optimal filtering scenario. Find h ( n ) with the best error performance: e ( n ) = x ( n ) − ˆ x ( n ) = x ( n ) − h ( n ) ∗ y ( n ) The error performance is measured by the mean squared error (MSE) �� � 2 � ξ = E e ( n ) . Murat Üney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 4 / 69

  5. Optimal Filtering Optimal filter design Optimal filter design Observation Estimation sequence Linear time invariant system Figure 1: Optimal filtering scenario. The MSE is a function of h ( n ) , i.e., h = [ · · · , h ( − 2 ) , h ( − 1 ) , h ( 0 ) , h ( 1 ) , h ( 2 ) , · · · ] �� � 2 � �� � 2 � x ( n ) − h ( n ) ∗ y ( n ) ξ ( h ) = E e ( n ) = E . Murat Üney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 5 / 69

  6. Optimal Filtering Optimal filter design Optimal filter design Observation Estimation sequence Linear time invariant system Figure 1: Optimal filtering scenario. The MSE is a function of h ( n ) , i.e., h = [ · · · , h ( − 2 ) , h ( − 1 ) , h ( 0 ) , h ( 1 ) , h ( 2 ) , · · · ] �� � 2 � �� � 2 � x ( n ) − h ( n ) ∗ y ( n ) ξ ( h ) = E e ( n ) = E . Thus, optimal filtering problem is h opt = arg min h ξ ( h ) Murat Üney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 5 / 69

  7. Optimal Filtering Application examples Application examples 1) Prediction, interpolation and smoothing of signals Murat Üney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 6 / 69

  8. Optimal Filtering Application examples Application examples 1) Prediction, interpolation and smoothing of signals d = 1 ◮ Prediction for anti-aircraft fire control. Murat Üney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 7 / 69

  9. Optimal Filtering Application examples Application examples 1) Prediction, interpolation and smoothing of signals d = − 1 / 2 (interpolation) d = − 1 (smoothing) ◮ Signal denoising applications, estimation of missing data points. Murat Üney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 8 / 69

  10. Optimal Filtering Application examples Application examples 2) System identification Figure 2: System identification using a training sequence t ( n ) from an ergodic and stationary ensemble. Murat Üney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 9 / 69

  11. Optimal Filtering Application examples Application examples 2) System identification Figure 2: System identification using a training sequence t ( n ) from an ergodic and stationary ensemble. y ( n ) transmitter microphone Modem hybrid filter Echo cancellation in full transformer two − wire line synthesized duplex data transmission. ^ echo ( ) x n ( n ) ( n ) received e x receiver Σ signal + echo earpiece Murat Üney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 9 / 69

  12. Optimal Filtering Application examples Application examples 3) Inverse System identification Figure 3: Inverse system identification using x ( n ) as a training sequence. Murat Üney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 10 / 69

  13. Optimal Filtering Application examples Application examples 3) Inverse System identification Figure 3: Inverse system identification using x ( n ) as a training sequence. ◮ Channel equalisation in digital communication systems. Murat Üney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 10 / 69

  14. Optimal Filtering Optimal solution: Wiener-Hopf equations Optimal solution: Normal equations � ( e ( n )) 2 � Consider the MSE ξ ( h ) = E The optimal filter satisfies ∇ ξ ( h ) | h opt = 0 . Equivalently, for all j = . . . , − 2 , − 1 , 0 , 1 , 2 , . . . � � ∂ξ 2 e ( n ) ∂ e ( n ) ∂ h ( j ) = E ∂ h ( j ) � � � x ( n ) − � ∞ � 2 e ( n ) ∂ i = −∞ h ( i ) y ( n − i ) = E ∂ h ( j ) � � 2 e ( n ) ∂ ( − h ( j ) y ( n − j )) = E ∂ h ( j ) = − 2 E [ e ( n ) y ( n − j )] Murat Üney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 11 / 69

  15. Optimal Filtering Optimal solution: Wiener-Hopf equations Optimal solution: Normal equations � ( e ( n )) 2 � Consider the MSE ξ ( h ) = E The optimal filter satisfies ∇ ξ ( h ) | h opt = 0 . Equivalently, for all j = . . . , − 2 , − 1 , 0 , 1 , 2 , . . . � � ∂ξ 2 e ( n ) ∂ e ( n ) ∂ h ( j ) = E ∂ h ( j ) � � � x ( n ) − � ∞ � 2 e ( n ) ∂ i = −∞ h ( i ) y ( n − i ) = E ∂ h ( j ) � � 2 e ( n ) ∂ ( − h ( j ) y ( n − j )) = E ∂ h ( j ) = − 2 E [ e ( n ) y ( n − j )] Hence, the optimal filter solves the “normal equations” E [ e ( n ) y ( n − j )] = 0 , j = . . . , − 2 , − 1 , 0 , 1 , 2 , . . . Murat Üney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 11 / 69

  16. Optimal Filtering Optimal solution: Wiener-Hopf equations Optimal solution: Wiener-Hopf equations The error of h opt is orthogonal to its observations, i.e., for all j ∈ Z E [ e opt ( n ) y ( n − j )] = 0 which is known as “the principle of orthogonality”. Murat Üney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 12 / 69

  17. Optimal Filtering Optimal solution: Wiener-Hopf equations Optimal solution: Wiener-Hopf equations The error of h opt is orthogonal to its observations, i.e., for all j ∈ Z E [ e opt ( n ) y ( n − j )] = 0 which is known as “the principle of orthogonality”. Furthermore, �� ∞ � � � E [ e opt ( n ) y ( n − j )] = E x ( n ) − h opt ( i ) y ( n − i ) y ( n − j ) i = −∞ ∞ � h opt ( i ) E [ y ( n − i ) y ( n − j )] = 0 = E [ x ( n ) y ( n − j )] − i = −∞ Murat Üney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 12 / 69

  18. Optimal Filtering Optimal solution: Wiener-Hopf equations Optimal solution: Wiener-Hopf equations The error of h opt is orthogonal to its observations, i.e., for all j ∈ Z E [ e opt ( n ) y ( n − j )] = 0 which is known as “the principle of orthogonality”. Furthermore, �� ∞ � � � E [ e opt ( n ) y ( n − j )] = E x ( n ) − h opt ( i ) y ( n − i ) y ( n − j ) i = −∞ ∞ � h opt ( i ) E [ y ( n − i ) y ( n − j )] = 0 = E [ x ( n ) y ( n − j )] − i = −∞ Result (Wiener-Hopf equations) ∞ � h opt ( i ) r yy ( i − j ) = r xy ( j ) i = −∞ Murat Üney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 12 / 69

  19. Optimal Filtering Optimal solution: Wiener-Hopf equations The Wiener filter Wiener-Hopf equations can be solved indirectly, in the complex spectral domain: h opt ( n ) ∗ r yy ( n ) = r xy ( n ) ↔ H opt ( z ) P yy ( z ) = P xy ( z ) Murat Üney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 13 / 69

  20. Optimal Filtering Optimal solution: Wiener-Hopf equations The Wiener filter Wiener-Hopf equations can be solved indirectly, in the complex spectral domain: h opt ( n ) ∗ r yy ( n ) = r xy ( n ) ↔ H opt ( z ) P yy ( z ) = P xy ( z ) Result (The Wiener filter) H opt ( z ) = P xy ( z ) P yy ( z ) Murat Üney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 13 / 69

  21. Optimal Filtering Optimal solution: Wiener-Hopf equations The Wiener filter Wiener-Hopf equations can be solved indirectly, in the complex spectral domain: h opt ( n ) ∗ r yy ( n ) = r xy ( n ) ↔ H opt ( z ) P yy ( z ) = P xy ( z ) Result (The Wiener filter) H opt ( z ) = P xy ( z ) P yy ( z ) The optimal filter has an infinite impulse response (IIR), and, is non-causal, in general. Murat Üney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 13 / 69

  22. Optimal Filtering Optimal solution: Wiener-Hopf equations Causal Wiener filter We project the unconstrained solution H opt ( z ) onto the set of causal and stable IIR filters by a two step procedure: First, factorise P yy ( z ) into causal (right sided) Q yy ( z ) , and anti-causal (left sided) parts Q ∗ yy ( 1 / z ∗ ) , i.e., P yy ( z ) = σ 2 y Q yy ( z ) Q ∗ yy ( 1 / z ∗ ) . Select the causal (right sided) part of P xy ( z ) / Q ∗ yy ( 1 / z ∗ ) . Result (Causal Wiener filter) � � 1 P xy ( z ) H + opt ( z ) = σ 2 yy ( 1 / z ∗ ) Q ∗ y Q yy ( z ) + Murat Üney (IDCOM) Optimal and Adaptive Filtering 26/06/2017 14 / 69

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend