singular perturbations in stochastic control and hamilton
play

Singular Perturbations in Stochastic Control and - PowerPoint PPT Presentation

Singular Perturbations in Stochastic Control and Hamilton-Jacobi-Bellman Equation Hicham Kouhkouh joint work with Martino Bardi Dipartimento di Matematica Tullio Levi-Civita Universit` a di Padova kouhkouh@math.unipd.it IPAM Workshop


  1. Singular Perturbations in Stochastic Control and Hamilton-Jacobi-Bellman Equation Hicham Kouhkouh joint work with Martino Bardi Dipartimento di Matematica “Tullio Levi-Civita” Universit` a di Padova kouhkouh@math.unipd.it IPAM Workshop ”Stochastic Analysis Related to Hamilton-Jacobi PDEs” Los Angeles, May 18-22, 2020 Hicham Kouhkouh (Universit` a di Padova) Singular Perturbations & HJB PDE Los Angeles, May 18, 2020 1 / 13

  2. Problem Goal: study the limit 1 as ε → 0 , of the system √ 2 σ ε ( X t , Y t , u t ) dW t , X 0 = x ∈ R n dX t = f ( X t , Y t , u t ) dt + � (SDE( 1 ε )) dY t = 1 2 Y 0 = y ∈ R m ε b ( X t , Y t ) dt + ε̺ ( X t , Y t ) dW t , Assumptions: y · b < − α | y | when | y | ≥ R , and ̺̺ ⊤ bounded Issues:  ∗ High dimension : ∀ n , m ≥ 1      ∗ Controlled dynamics : u t     ∗ Unbounded domain : x ∈ R n , y ∈ R m = ⇒ Can we do something?  ∗ Unbounded data:      | f | , � σ � , | b | ≤ C (1 + | x | + | y | )    ∗ Possible degeneracy of σ and also ̺ Yes, but... 1 Ref.: Bardi, M., & Cesaroni, A. (2011) , and the references therein! Hicham Kouhkouh (Universit` a di Padova) Singular Perturbations & HJB PDE Los Angeles, May 18, 2020 2 / 13

  3. Plan V ε ( t , x , y ) SDE ( 1 ( HJB ) ε ε ) Viscosity control prob Ergodicity Effective Ham ??? ??? Homogenization Bellman Ham ( Selection arg . ) control prob HJ ( B ) V ( t , x ) ( ⋆ )? Viscosity Hicham Kouhkouh (Universit` a di Padova) Singular Perturbations & HJB PDE Los Angeles, May 18, 2020 3 / 13

  4. Stochastic Control Problem with Singular Perturbations (Ω , F , F t , P ) a complete filtered probability space, ( W t ) t an F t -adapted standard r -dimensional Brownian motion, √ 2 σ ε ( X t , Y t , u t ) dW t , X 0 = x ∈ R n dX t = f ( X t , Y t , u t ) dt + � (1) dY t = 1 2 Y 0 = y ∈ R m ε b ( X t , Y t ) dt + ε̺ ( X t , Y t ) dW t , Pay-off function J : [0 , T ] ∋ ( t , x , y , u ) × R n × R m × U → R , λ > 0 � � � T e λ ( t − T ) g ( X T ) + ℓ ( X s , Y s , u s ) e λ ( s − T ) ds J ( t , x , y , u ) := E x , y , t Value function V ε ( t , x , y ) := sup { J ( t , x , y , u ) , s . t . ( X · , Y · ) in (1) } (2) u ∈U U the set of F t -progressively measurable processes taking values in U . Hicham Kouhkouh (Universit` a di Padova) Singular Perturbations & HJB PDE Los Angeles, May 18, 2020 4 / 13

  5. HJB equation A fully nonlinear degenerate parabolic equation in ( 0 , T ) × R n × R m � �  D 2 yy V ε D 2 xy V ε x , y , V ε , D x V ε , D y V ε   − V ε t + F ε , D 2 xx V ε , , = 0 , √ ε ε ε   V ε ( T , x , y ) = g ( x ) , in R n The Hamiltonian F ε : R n × R m × R × R n × R m × S n × S m × M n , m → R is F ε ( x , y , s , p , q , M , N , Z ) := H ε ( x , y , p , M , Z ) − L ( x , y , q , N ) + λ s , where � � H ε ( x , y , p , M , Z ) := min − tr( σ ε σ ε ⊤ M ) − f · p − 2tr( σ ε ̺ ⊤ Z ⊤ ) − ℓ u ∈ U L ( x , y , q , N ) := b · q + tr( ̺̺ ⊤ N ) σ ε , f , b and ℓ are computed at ( x , y , u ) and ̺ = ̺ ( x , y ) Hicham Kouhkouh (Universit` a di Padova) Singular Perturbations & HJB PDE Los Angeles, May 18, 2020 5 / 13

  6. Ergodicity √ 2 ̺ ( x , Y y ( · )) dW t , Y y (0) = y ∈ R m , x fixed dY y ( · ) = b ( x , Y y ( · )) dt + It is well known 2 that an invariant measure µ x of Y y ( · ) exists, is unique, has finite moments and Lip. Cont. density 3 w.r.t. x � P Y y ( t ) ( · ) − µ x ( · ) � TV ≤ C (1 + | y | d ) (1 + t ) − (1+ k ) satisfies Moreover, we prove 4 for τ n := inf { t ≥ 0 s.t. � Y y ( t ) � ≥ n } , Lemma � � � � − τ n ≤ C n β e − n η − ∃ η > 0 , ∀ β > 0 , E exp n → + ∞ 0 , ( loc . unif . y ) − − − → n β 2Veretennikov, ”On polynomial mixing and convergence rate for stochastic difference and differential equations.” Theory of Probability & Its Applications 44.2 (2000) 3Pardoux & Veretennikov, ”On Poisson equation and diffusion approximation 2.” The Annals of Probability (2003) 4In the line of proof [Prop.1.4] in: Herrmann, Imkeller, Peithmann, ”Transition times and stochastic resonance for multidimensional diffusions with time periodic drift: A large deviations approach” , Ann. Appl. Probab.(2006) Hicham Kouhkouh (Universit` a di Padova) Singular Perturbations & HJB PDE Los Angeles, May 18, 2020 6 / 13

  7. Construct an Effective Hamiltonian � An approximation of the δ -Cell problem: � � n →∞ R m (e.g. D n ball of radius n ). Let { D n } n ⊂ R m , ∂ D n smooth, D n − − − → Consider the Dirichlet-Poisson problem, for h ( y ) := H ( x , y , p , M , 0 ) � δω ( y ) − L ω ( y ) = − h ( y ) , in D n ω ( y ) = 0 , on ∂ D n � � τ n � It has a unique solution ω δ, n ( y ) = E 0 h ( Y y ( t )) e − δ t dt − where τ n is the first exist time of Y y ( · ) from D n . Proposition � n − (4+ α ) � Let δ ( n ) = O , for some α > 0 , the one has � � �� � � � � � δ ( n ) ω δ ( n ) , n ( y ) − � lim − R m h ( y ) d µ ( y ) � = 0 , loc. unif. in y , n →∞ where µ is the unique invariant probability measure for the process Y y ( · ) . Hicham Kouhkouh (Universit` a di Padova) Singular Perturbations & HJB PDE Los Angeles, May 18, 2020 7 / 13

  8. Convergence of the value function The effective Hamiltonian is � � � H ( x , p , M ) := R m H ( x , y , p , M , 0) d µ ( y ) The effective � HJB equation is � − V t + H ( x , D x V , D 2 ( t , x ) ∈ ( 0 , T ) × R n xx V ) + λ V ( x ) = 0 , in R n V ( T , x ) = g ( x ) , Theorem The solution V ε to ( HJB ) ε converges uniformly on compact subsets of [0 , T ) × R n × R m to the unique continuous viscosity solution to the limit problem � HJB satisfying a quadratic growth condition in x, i.e. ∃ K > 0 such that | V ( t , x ) | ≤ K (1 + | x | 2 ) , ∀ ( t , x ) ∈ [0 , T ] × R n Hicham Kouhkouh (Universit` a di Padova) Singular Perturbations & HJB PDE Los Angeles, May 18, 2020 8 / 13

  9. Control representation of � HJB Proposition Under the standing assumptions, the effective Hamiltonian writes � � � � � − trace ( σσ ⊤ M ) − f · p − ℓ H ( x , p , M ) = min d µ x ( y ) ν ∈U ex ( x ) R m where σ, f and ℓ are computed at ( x , y , u ) , and U ex ( x ) is the set of progressively measurable processes taking values in the extended control set U ex ( x ) := L 2 (( R m , µ x ) , U ) . The extended controls are ν · ( · ) : t �→ ν t ( · ) ∈ L 2 (( R m , µ ˆ X t ) , U ) � � � � � R m | φ ( y ) | 2 d µ ˆ � = φ ( · ) : y �→ φ ( y ) ∈ U X t ( y ) < ∞ � � � � This is an exchange operation ” min = min ” � � Hicham Kouhkouh (Universit` a di Padova) Singular Perturbations & HJB PDE Los Angeles, May 18, 2020 9 / 13

  10. Limit Control Problem (I) A guess for the limit dynamics:  �   d ˆ R m f ( ˆ X t = X t , y , ν t ( y )) d µ ˆ X t ( y )( y ) dt      ��    √ R m σσ ⊤ ( ˆ + 2 X t , y , ν t ( y )) d µ ˆ X t ( y ) dW t , (3)           ν t ( · ) ∈ U ex ( ˆ ˆ X 0 = x ∈ R n . X t ) , and The effective optimal control problem V ( t , x ) = sup { ˆ J ( t , x , ν · ( · )) , subject to (3) } (4) where the effective pay off ˆ J ( t , x , ν · ( · )) is � � � T � e λ ( t − T ) g ( ˆ R m ℓ ( ˆ X s ( y ) e λ ( s − T ) ds E x X T ) + X s , y , ν s ( y )) d µ ˆ t Hicham Kouhkouh (Universit` a di Padova) Singular Perturbations & HJB PDE Los Angeles, May 18, 2020 10 / 13

  11. Limit Control Problem (II) Theorem The value function (4) is the unique viscosity solution to the Cauchy HJB. It is in particular, the limit of V ε defined in (2) for ( HJB ) ε . problem � V ε ( t , x , y ) SDE ( 1 ( HJB ) ε ε ) Viscosity control prob Ergodicity Effective Ham THEOREM ??? Homogenization Bellman Ham Selection arg . control prob � HJB V ( t , x ) SDI Viscosity Hicham Kouhkouh (Universit` a di Padova) Singular Perturbations & HJB PDE Los Angeles, May 18, 2020 11 / 13

  12. Convergence of Trajectories Key observation: The convergence Theorem for the value function holds independently of the choice of the cost functional, i.e. � As ε → 0, � � SDE ( 1 ε ) and SDI always produce the same value for every choice of a cost functional in the optimal control problem. So we can hope for at least a convergence of the type t ∈ [0 , T ] � φ ( X ε t ) − φ ( ˆ ε → 0 max lim X t ) � = 0 where φ is any real valued continuous function. Work in Progress Hicham Kouhkouh (Universit` a di Padova) Singular Perturbations & HJB PDE Los Angeles, May 18, 2020 12 / 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend