optical spectroscopy of local type 1 agn liners
play

Optical Spectroscopy of local type-1 AGN LINERs S. Cazzoli et al. - PowerPoint PPT Presentation

Optical spectroscopy of nearby type-1 LINERs Cazzoli et al. 2018 Optical Spectroscopy of local type-1 AGN LINERs S. Cazzoli et al. 2018 MNRAS, 480, 1106-11162 I. Marquez , J. Masegosa , A. del Olmo, M. Povic , O. Gonzalez- Martin , B.


  1. Optical spectroscopy of nearby type-1 LINERs Cazzoli et al. 2018 Optical Spectroscopy of local type-1 AGN LINERs S. Cazzoli et al. 2018 MNRAS, 480, 1106-11162 I. Marquez , J. Masegosa , A. del Olmo, M. Povic , O. Gonzalez- Martin , B. Balmaverde , L. Hernandez-Garcia , S. Garcia-Burillo

  2. Optical spectroscopy of nearby type-1 LINERs Cazzoli et al. 2018 L ow I onisation N uclear E mission-line R egion s LINERs are LLAGNs L H α ∼ 0.5-3.7 × 10 39 erg/s L X [2 − 10 KeV ] ∼ 1.2-8.8 × 10 39 erg/s and Ho+08 Heckman+80 Filipenko+92 Dopita+96 Shields+97 Intensity [A.U.] Ho+97,+03, +08 Elitzur&Shlosman+06 Gonzalez-Martin+09 Singh+13 Elitzur+2014 Balmaverde+14,+16 Netzer+2015 Constantin+15 Padovani+17 Marquez+2017 ... Wavelength [A] N arrow L ines B road L ines Strong low-ionisation and faint Faint high-ionisation emission lines Does the BLR disappear? Different profiles, stratification of the NLR?

  3. Optical spectroscopy of nearby type-1 LINERs Cazzoli et al. 2018 Optical emission: BPTs diagnostic diagrams Baldwin+81 Diagnostic diagrams: BPTs (Baldwin+1981) The ionisation mechanism of optical lines is debated: AGNs – e.g. Heckman+80 Shock-heating models – e.g. Kewley+01 pAGBs stars models – e.g. Sarzi+10, Singh+13 Which is the dominant ionisation mechanism?

  4. Optical spectroscopy of nearby type-1 LINERs Cazzoli et al. 2018 Galaxy evolution and outflows LINERs are important population to study: Ho+08 Most numerous local AGN population Bridge the gap between normal and luminous active galaxies LINERs are unexplored laboratory for outflows !! Very few works, mainly via H α imaging, e.g. Pogge+00, Masegosa+11 Detection rate? kinematics ? Does the broadening of lines hamper the detectability of the BLR component? Veilleux+05, review NGC4438 arcsec M 82 M 82 optical+IR H α Hubble archive arcsec Masegosa+11 OUTFLOW NGC1052 - Cazzoli+18 H α -[NII] [SII] [OIII] [OI] H β Smith, Gallagher & Westmoquette

  5. Optical spectroscopy of nearby type-1 LINERs Cazzoli et al. 2018 Optical spectroscopy of nearby type-1 LINERs, Cazzoli+18 LINER-population as a case of study: Does the BLR disappear ? Is the NLR stratified ? Which is the dominant ionisation mechanism? Are outflows frequent ? Most numerous local AGN population Bridge the gap between normal and luminous active galaxies Our Goals: Detectability and properties of the BLR component Low and high ionisation lines do (not) have the same profiles Discriminate between ionisation: from AGN, shocks and pAGBs Frequency and kinematics of outflows Type 1 LINERs, L1 = ⇒ direct sight, BLR visible

  6. Optical spectroscopy of nearby type-1 LINERs Cazzoli et al. 2018 Sample: 22 L1 from the Palomar Survey, Ho+97 All L1 in the Northern hemisphere, z ∼ 0.006, D ∼ 30Mpc (on average) • Genuine AGNs from X-rays studies (Gonz´ alez-Mart´ ın+09, Hern´ andez-Garc´ ıa+14) Ground-based spectra from H β to [SII] TWIN @ CAHA 3.5m 20 LINERs slit width 1.2” – 0.5 ˚ A/pixel ALFOSC @ NOT 2.5m 2 LINERs slit width 1.0” – 1.5 ˚ A/pixel NGC4203 excluded Space-based spectra from [OI] to [SII] double peaked H α from the accretion disc HST / STIS (Balmaverde+14) 12 LINERs ground: 21 L1 space: 11 L1 slit width ≤ 0.2” – 0.6 ˚ A/pixel

  7. Optical spectroscopy of nearby type-1 LINERs Cazzoli et al. 2018 Strategy STELLAR MODELING and SUBTRACTION : 3 techniques pPXF (Cappellari+17), STARLIGHT (Cid Fernandez+11), ‘template galaxies’ (Ho+08) MODELS : [OI] and/or [SII] as template for the H α -[NII] blend n [SII] [OI] H α - [NII] o ] I i I t S a [ c ) i 1 f i t a r t s o n [OI] [SII] H α - [NII] n o H α ] I i O t a [ c ) i 2 f i BROAD t a r t s o [SII] [NII] [OI] H α n ] I O n o [ d i t n a a c i ] f I i [SII] [OI] H α - [NII] I t S a [ r t ) 3 s R L N THREE COMPONENTS FOR EMISSION LINES (ionised gas) : Narrow, Second and Broad (AGN) TWO COMPONENTS FOR ABSORPTION NaD LINES (neutral gas)

  8. Optical spectroscopy of nearby type-1 LINERs Cazzoli et al. 2018 On the AGN nature of LINERs NLR stratification is often present in L1 Ground: 9/21 vs. Space: 5/11 The broad H α component is ubiquitous in HST spectra ONLY Ground: 7/21 vs. Space: 11/11 Difference of > 1000 km/s with previous measurements the FWHM(H α ) Choice of the model, number of components and stellar subtraction ♣ .. what about type-2? Hermosa-Mu˜ noz+19 POSTER ground: CAHA/TWIN space: HST/STIS NGC4450 NGC4450 NARROW [OI] NARROW [OI] 2.0 4000 H α -[NII] 1.5 H α -[NII] BROAD [SII] BROAD [SII] Flux [erg/cm /s/Å] [SII] Flux [erg/cm /s/Å] 3000 Flux [AU] [SII] [OI] 1.0 [OI] 2000 BROAD [OI] BROAD [OI] 0.5 1000 0.0 VERY BROAD H 0.10 600 Residuals Residuals 6300 6400 6500 6600 6700 6300 6400 6500 6600 6700 Wavelength Wavelength

  9. Optical spectroscopy of nearby type-1 LINERs Cazzoli et al. 2018 Non rotational motions and kinematic classification Second component, possibly associated to non rotational motions, seem common Ground: 14/21 vs. Space: 7/11 Kinematic classification: the σ -V diagram Limits from rotation curves Narrow component: rotation – all cases Second component: all possibilities, outflow detection rate ∼ 60 % s Narrow Second s 600 e e Rotation s Candidates t Rotation a e t Rotation Rotation a t Narrow Component Second Component d a Component Component d d i d i i d d n 400 n n a a a C C C Velocity [km/s] 200 − − Inflows Inflows Inflows Inflows 0 Ouflows Ouflows Ouflows Ouflows − − 200 − − 400 − − 600 0 200 400 600 800 1000 1000 0 0 200 400 600 800 1000 σ [km/s] σ [km/s] Velocity dispersion [kms − − 1 ] Velocity dispersion [kms − 1 ] − ground space

  10. Optical spectroscopy of nearby type-1 LINERs Cazzoli et al. 2018 Discriminating ionisation mechanisms: narrow component BPTs constraints Dividing curve by Kauffmann+03, Kewley+06, Filipenko+92 AGN (Allen+08) and pAGBs (Binette+04) models N el : 100 cm -3 Log U : Models: AGNs Weak [OI] Strong [OI] > 0.16 -3.6 -3.0 0.0 pAGBs 2.0 Sy Sy Sy Narrow Component Sy Sy Sy 1.5 LOG [O III] / H β LOG ([OIII] / H β ) 1.0 0.5 0.0 LINER LINER LINER LINER LINER LINER HII - SF − 0.5 HII - SF HII - SF HII − SF HII − SF HII − SF − 1.0 -1.0 -0.5 0.0 0.5 -1.5 -1.0 -0.5 0.0 0.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 LOG [N II] / H α LOG [S II] / H α LOG [OI] / H α AGN as the dominant mechanism of ionisation

  11. Optical spectroscopy of nearby type-1 LINERs Cazzoli et al. 2018 Discriminating ionisation mechanisms: second component As for the narrow component but we focus [OI] BPT: the most sensitive to shocks Shocks models reproduce well the line ratios for the second component [OI] BPT + shocks models (Groves+04) + kinematic measurements/classification 2.0 2.0 shock velocity s Sy Sy w Sy Second Component n Sy Sy Sy o o 1.5 1.5 i l f LOG [O III] / H β t a t u t β β β o O β 1.0 1.0 R C s w o 0.5 0.5 l f n I 0.0 0.0 ER LINER LINER LINER LINER LINER LINER LINER − 0.5 H − − − 0.5 HII - SF − HII - SF − − H HII - SF − − HII − SF − HII − SF − HII − SF − − − 1.0 − − − 1.0 − 1.5 − − − − − − − − − − 0.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 0.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 − − − − − − − − − − − − − − − − − 2.5 − 2.0 − 1.5 − 1.0 − 0.5 − − − − − 0.0 0.5 0.5 − 2.5 − − 2.5 − 2.0 − 1.5 − 1.0 − 0.5 − − − 0.0 0.5 − − − − − α α α LOG [OI] / H α α α α α LOG [OI] / H α α α LOG [OI] / H α α α α Models: Shocks V shocks = 100-300 km/s V shocks = 400-800 km/s N el : 100 and 1000 cm -3 s • Mild shocks associated to perturbation of the rotation • Strong shocks associated to non rotational motions β β − − − − − − − − − − − − − − − − − − − − − − − − − α α α − − − − − − − − − − − − − − − α α α

  12. Optical spectroscopy of nearby type-1 LINERs Cazzoli et al. 2018 Optical Spectroscopy of local type-1 LINERs, Cazzoli+18 The AGN nature of L1 BLR elusive in ground based spectroscopy, ubiquitous in HST data AGN as the dominant mechanism of ionisation NLR stratification is often present The BLR-component detection and properties are sensitive to: template for H α -[NII] blend, number of Gaussians and starlight subtraction Kinematics and ionisation mechanism of the line components Narrow component: Rotation – all cases AGN photoionisation Second component: Non-rotational motions / outflows are frequent Associated to shocks ([OI] BPT + kinematics) The lack of neutral outflows might be a consequence of our classification Type-2 LINERs: Hermosa-Mu˜ noz+19 - POSTER Ongoing work 3D outflows and feedback with MEGARA/GTC and MUSE/VLT

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend