operator theoretic methods for prediction and control of
play

Operator-theoretic methods for prediction and control of nonlinear - PowerPoint PPT Presentation

Operator-theoretic methods for prediction and control of nonlinear dynamical systems Milan Milan Kor Korda da Big picture Infinite-dimensional Lifting Approximation Linear object Difficult to handle Finite-dimensional Nonlinear object


  1. Operator-theoretic methods for prediction and control of nonlinear dynamical systems Milan Milan Kor Korda da

  2. Big picture Infinite-dimensional Lifting Approximation Linear object Difficult to handle Finite-dimensional Nonlinear object Linear object “Easy” to handle Difficult to handle Milan Korda 2

  3. Big picture Lifting Linear operator Approximation Infinite-dimensional operator Approximation of x + = f ( x ) linear operator Nonlinear dynamics Matrix Milan Korda 3

  4. Koopman operator Milan Korda 4

  5. Koopman operator K : g �→ g ◦ f g : X → C Milan Korda 5

  6. Koopman operator K : g �→ g ◦ f g : X → C K ( α g 1 + β g 2 ) = ( α g 1 + β g 2 ) � f Linearity = α g 1 � f + β g 2 � f = α K g 1 + β K g 2 Milan Korda 6

  7. Koopman operator K : g �→ g ◦ f g : X → C (1900 − 1981) [B. O. Koopman, 1931] [Mezić, Banaszuk, 2004] Milan Korda 7

  8. Koopman operator K : g �→ g ◦ f g : X → C Eigenfunctions K φ = λφ φ ◦ f = λφ ⇔ Milan Korda 8

  9. Koopman operator K : g �→ g ◦ f g : X → C Eigenfunctions K φ = λφ φ ◦ f = λφ ⇔ φ ◦ f k = λ k φ Linear coordinate Milan Korda 9

  10. Koopman operator Eigenfunctions φ ◦ f k = λ k φ invariant set λ = 1 { x : φ ( x ) = γ } ⇒ Chirikov standard map Milan Korda 10

  11. Koopman operator Eigenfunctions φ ◦ f k = λ k φ invariant set | λ | ≤ 1 { x : | φ | ( x ) ≤ γ } ⇒ Chirikov standard map Milan Korda 11

  12. Koopman operator Eigenfunctions φ ◦ f k = λ k φ periodic set λ = e i ω { x : φ ( x ) = γ } ⇒ ( ω rational) Chirikov standard map [ Budisic et al. 2012] Milan Korda 12

  13. Koopman operator Eigenfunctions φ ◦ f k = λ k φ Isostables Isochrons Ergodic partition [ Mauroy et al. 2013] Model reduction . . . [ Rowley et al. 2009] Milan Korda 13

  14. Prediction Milan Korda 14

  15. Prediction Invariant subspace H N = span { ψ 1 , . . . , ψ N } N � c i ψ i ∈ H N g = i =1 Milan Korda 15

  16. Prediction Invariant subspace H N = span { ψ 1 , . . . , ψ N } N � c i ψ i ∈ H N g = i =1 g ( x k ) = CA k z 0 Linear predictor  ψ 1 ( x 0 )  . . C = [ c 1 , . . . , c N ] z 0 = ψ ( x 0 ) = .     ψ N ( x 0 ) Milan Korda 16

  17. Prediction Invariant subspace H N = span { ψ 1 , . . . , ψ N } N � c i ψ i ∈ H N g = i =1 g ( x k ) = CA k z 0 Linear predictor  ψ 1 ( x 0 )  . . C = [ c 1 , . . . , c N ] z 0 = ψ ( x 0 ) = .     ψ N ( x 0 ) ψ i ’s eigenfunctions A = diag( λ 1 , . . . , λ N ) ⇒ Milan Korda 17

  18. Linear prediction Linear A z k +1 z k Z ψ f x k +1 Nonlinear X x k Milan Korda 18

  19. Approximation of the Koopman operator Milan Korda 19

  20. Approximation H N := span { ψ 1 , . . . , ψ N } Goal K N := P N K |H N K N : H N → H N • Construct • Analyze K |H N P N K N H N Milan Korda 20

  21. Extended dynamic mode decomposition ( x i ) K i ) K ( x + x + Data = f ( x i ) i =1 i =1 i Basis functions ψ = [ ψ 1 , . . . , ψ N ] ⊤ K LS problem � ∥ ψ ( x + i ) − A ψ ( x i ) ∥ 2 min 2 A ∈ R N × N i =1 Koopman approximaton g = c ⊤ ψ K N,K g := c ⊤ A N,K ψ [Williams et al., 2015] Milan Korda 21

  22. Convergence of EDMD g = c ⊤ ψ K N,K g := c ⊤ A N,K ψ µ K = empirical measure ˆ on x 1 , . . . , x K Fact : K N,K = P ˆ µ K N K |H N Milan Korda 22

  23. Convergence of EDMD g = c ⊤ ψ K N,K g := c ⊤ A N,K ψ µ K = empirical measure ˆ on x 1 , . . . , x K Fact : K N,K = P ˆ µ K N K |H N Fact : lim K →∞ K N,K → K N = P µ N K |H N (iid or ergodic sampling from µ ) Milan Korda 23

  24. Convergence of EDMD g = c ⊤ ψ K N,K g := c ⊤ A N,K ψ K |H N P µ N Fact : lim K →∞ K N,K → K N = P µ N K |H N (iid or ergodic sampling from µ ) K N H N Milan Korda 24

  25. Convergence of EDMD H = L 2 ( µ ) Theorem • span { ψ i } ∞ i =1 = H • K : H → H bounded lim N →∞ � K N g � K g � = 0 for all g � H (Converge in strong operator topology) Milan Korda

  26. Convergence of EDMD H = L 2 ( µ ) Theorem • span { ψ i } ∞ i =1 = H • K : H → H bounded lim N →∞ � K N g � K g � = 0 for all g � H (Converge in strong operator topology) As a result, any finite-horizon predictions converge! Corollary Under the same assumptions For any N p � N : lim N →∞ sup i ∈ { 1 ,...,N p } � K i N g � K i g � = 0 Milan Korda

  27. Convergence of EDMD H = L 2 ( µ ) Theorem • span { ψ i } ∞ i =1 = H • K : H → H bounded lim N →∞ � K N g � K g � = 0 for all g � H (Converge in strong operator topology) As a result, any finite-horizon predictions converge! Corollary Under the same assumptions For any N p � N : lim N →∞ sup i ∈ { 1 ,...,N p } � K i N g � K i g � = 0 N ψ N � g � f i | 2 dµ � 0 X | CA i � lim N →∞ Milan Korda

  28. Convergence of EDMD H = L 2 ( µ ) Theorem • span { ψ i } ∞ i =1 = H • K : H → H bounded lim N →∞ � K N g � K g � = 0 for all g � H (Converge in strong operator topology) As a result, any finite-horizon predictions converge! Corollary Under the same assumptions For any N p � N : lim N →∞ sup i ∈ { 1 ,...,N p } � K i N g � K i g � = 0 Spectral convergence more delicate. See Korda M. and Mezić I. On Convergence of Extended Dynamic Mode Decompo- sition to the Koopman Operator , Journal of Nonlinear Science, 2017 Milan Korda

  29. Control (Joint work with Igor Mezić) Milan Korda 29

  30. Predictor x 1 , x 2 , . . . x + = f ( x, u ) u 1 , u 2 , . . . x 0 z + = g ( z, u ) x 1 , ˆ ˆ x 2 , . . . z 0 = ψ ( x 0 ) x = h ( z ) ˆ ψ : R n � R N , N � n Milan Korda 30

  31. Predictor x 1 , x 2 , . . . x + = f ( x, u ) u 1 , u 2 , . . . x 0 z + = Az + Bu x 1 , ˆ ˆ x 2 , . . . z 0 = ψ ( x 0 ) x = Cz ˆ ψ : R n � R N , N � n Milan Korda 31

  32. Why linear predictors? Can design controllers using linear methods u = κ lift ( z ) = ⇒ u = κ ( x ) := κ lift ( ψ ( x )) Milan Korda 32

  33. Why linear predictors? Can design controllers using linear methods u = κ lift ( z ) = ⇒ u = κ ( x ) := κ lift ( ψ ( x )) Especially suited for Model predictive control (MPC) • Optimization-based controller • Fast and effective for constrained linear systems • Computation speed independent of the size of the lift N Milan Korda 33

  34. Designing the predictors Milan Korda 34

  35. Koopman operator for controlled systems x + = f ( x, u ) , x ∈ R n , u ∈ R m Milan Korda 35

  36. Koopman operator for controlled systems x + = f ( x, u ) , x ∈ R n , u ∈ R m = ⇒ � f ( x, u (0)) � χ + = F ( χ ) := S u • Extended state � := ( x, u ) ∈ X := R n × � ( R m ) • Shift operator ( S u )( i ) = u ( i + 1) Space of all control sequences ( u i ) ∞ i =0 =: u Milan Korda 36

  37. Koopman operator for controlled systems x + = f ( x, u ) , x ∈ R n , u ∈ R m = ⇒ � f ( x, u (0)) � χ + = F ( χ ) := S u • Extended state � := ( x, u ) ∈ X := R n × � ( R m ) • Shift operator ( S u )( i ) = u ( i + 1) Space of all control sequences ( u i ) ∞ i =0 =: u Koopman operator K φ = φ � F φ : X → R Milan Korda 37

  38. Koopman operator for controlled systems x + = f ( x, u ) , x ∈ R n , u ∈ R m = ⇒ � f ( x, u (0)) � χ + = F ( χ ) := S u • Extended state � := ( x, u ) ∈ X := R n × � ( R m ) • Shift operator ( S u )( i ) = u ( i + 1) Space of all control sequences ( u i ) ∞ i =0 =: u [Proctor et al, 2016] [Proctor et al, 2016] Other work [Williams et al, 2016] [Brunton et al, 2016] Milan Korda 38

  39. Linear predictors from Koopman - EDMD ( χ i ) K ( χ + i ) K Data χ + i = F ( χ i ) i =1 i =1 K � ∥ φ ( χ + i ) − A φ ( χ i ) ∥ 2 min LS problem 2 A ∈ R N φ × N φ i =1 φ ( χ ) = [ φ 1 ( χ ) , . . . , φ N φ ( χ )] � Milan Korda 39

  40. Linear predictors from Koopman - EDMD ( χ i ) K ( χ + i ) K Data χ + i = F ( χ i ) i =1 i =1 K � ∥ φ ( χ + i ) − A φ ( χ i ) ∥ 2 min LS problem 2 A ∈ R N φ × N φ i =1 linear operator φ ( χ ) = [ φ 1 ( χ ) , . . . , φ N φ ( χ )] � Predictor linear in u φ i ( x, u ) = ψ i ( x ) + L i ( u ) ⇒ Milan Korda 40

  41. Linear predictors from Koopman - EDMD ( χ i ) K ( χ + i ) K Data χ + i = F ( χ i ) i =1 i =1 K � ∥ φ ( χ + i ) − A φ ( χ i ) ∥ 2 min LS problem 2 A ∈ R N φ × N φ i =1 linear operator φ ( χ ) = [ φ 1 ( χ ) , . . . , φ N φ ( χ )] � Predictor linear in u φ i ( x, u ) = ψ i ( x ) + L i ( u ) ⇒ Without loss of generality φ ( x, u ) = [ ψ 1 ( x ) , . . . , ψ N ( x ) , u (0) 1 , . . . , u (0) m ] ⊤ Milan Korda 41

  42. Linear predictors from Koopman - EDMD ( χ i ) K ( χ + i ) K Data χ + i = F ( χ i ) i =1 i =1 K � ∥ φ ( χ + i ) − A φ ( χ i ) ∥ 2 min LS problem 2 A ∈ R N φ × N φ i =1 linear operator φ ( χ ) = [ φ 1 ( χ ) , . . . , φ N φ ( χ )] � Predictor linear in u φ i ( x, u ) = ψ i ( x ) + L i ( u ) ⇒ Without loss of generality φ ( x, u ) = [ ψ 1 ( x ) , . . . , ψ N ( x ) , u (0) 1 , . . . , u (0) m ] ⊤ K � ∥ ψ ( x + i ) − A ψ ( x i ) − B u i (0) ∥ 2 min 2 A ∈ R N × N , B ∈ R N × m i =1 Milan Korda 42

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend