operations on unambiguous finite automata
play

Operations on Unambiguous Finite Automata . Galina Jir askov a - PowerPoint PPT Presentation

. Operations on Unambiguous Finite Automata . Galina Jir askov a Mathematical Institute, Slovak Academy of Sciences, Ko sice, Slovakia asek, Jr., and Juraj Joint work with Jozef Jir Sebej DLT 2016, Montr eal, Qu


  1. . Operations on Unambiguous Finite Automata . Galina Jir´ askov´ a Mathematical Institute, Slovak Academy of Sciences, Koˇ sice, Slovakia ❁ asek, Jr., and Juraj ˇ Joint work with Jozef Jir´ Sebej DLT 2016, Montr´ eal, Qu´ ebec, Canada . . . . . . . . . . . . . . . . . . . . .. . .. . .. . .. . .. . .. . .. . .. . .. . . .. .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . Galina Jir´ askov´ a Operations on Unambiguous Finite Automata

  2. . Nondeterministic and Deterministic Finite Automata . . . NFA N = ( Q , Σ , δ, I , F ): Example (An NFA) . . a,b δ ⊆ Q × Σ × Q a,b a a,b computation on w = a 1 a 2 · · · a k q0 q1 q2 q 3 a k a 1 a 2 a 3 − → q 1 − → q 2 − → · · · − → q k q 0 w = aaa q 0 ∈ I a a a accepting if q k ∈ F q 0 − → q 1 → q 2 − → q 3 − (acc.) a a a rejecting if q k / ∈ F → q 0 − − → q 0 → q 0 − q 0 (rej.) . . . . NFA N = ( Q , Σ , δ, I , F ) is a DFA: Example (An incomplete DFA) . . | I | = 1 b if ( q , a , p ) and ( q , a , r ) are in δ , a a,b a,b q0 q1 q2 q 3 then p = r . . NFAs may have multiple initial states DFAs may be incomplete . . . . . . . . . . . . . . . . . . . . .. . .. . .. . .. . .. . .. . .. . .. . . .. .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . Galina Jir´ askov´ a Operations on Unambiguous Finite Automata

  3. . Subset Automaton and Reverse of NFA . . . Definition Example (Subset automaton) . . The (incomplete) subset automaton N a,b a,b a of NFA N = ( Q , Σ , δ, I , F ) q 0 q 2 q 1 is the DFA (2 Q \ {∅} , Σ , δ ′ , I , F ′ ) . . . . (N) b a a . a b b q 02 q 0 q 01 q 012 Proposition . b a Every n -state NFA can be simulated a,b a,b q q 2 q by an (2 n − 1)-state incomplete DFA. 12 1 . . . . Example (Reverse of NFA) Definition . . The reverse of an NFA N q4 b b N = ( Q , Σ , δ, I , F ) is the NFA a a,b a,b q0 q1 q2 q 3 N R = ( Q , Σ , δ R , F , I ) , N R q4 b b a a,b a,b where ( p , a , q ) ∈ δ R iff ( q , a , p ) ∈ δ q0 q1 q2 q 3 . . . . . . . . . . . . . . . . . . . . . . .. . .. . .. . .. . .. . .. . .. . .. . . .. .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . Galina Jir´ askov´ a Operations on Unambiguous Finite Automata

  4. . Unambiguous Finite Automata . . . Definition ( N = ( Q , Σ , δ, I , F )) Example (not unambiguous) . . An NFA is unambiguous if it has q2 at most one accepting computation a q0 q1 on every input string. a − two accepting computations on a S ⊆ Q is reachable in N q4 if S = δ ( I , w ) for some w b b a,b a,b S ⊆ Q is co-reachable in N a q0 q1 q2 q 3 if S is reachable in N R − two accepting computations on abb . . . . Proposition Example (unambiguous) . . An NFA is unambiguous iff (in)complete DFA | S ∩ T | ≤ 1 NFA N s.t. N R deterministic for each reachable S NFA in the first slide and each co-reachable T . . . . . . . . . . . . . . . . . . . . . . .. . .. . .. . .. . .. . .. . .. . .. . . .. . .. .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . Galina Jir´ askov´ a Operations on Unambiguous Finite Automata

  5. . Why Unambiguous Finite Automata? . . Motivation and History . fundamental notion in the theory of variable-length codes [Bersten, Perrin, Reutenauer: Codes and Automata] ambiguity in CF languages: ambiguous, unambiguous, and deterministic CF languages are all different ambiguity in finite automata [Schmidt 1978] - lower bound method based on ranks of matrices elaborated in [Leung 2005] UFA-to-DFA conversion: 2 n NFA-to-UFA conversion: 2 n − 1 lower bound method further elaborated in 2002 by Hromkoviˇ c, Seibert, Karhum¨ aki, Klauck & Schnitger . . . . . . . . . . . . . . . . . . . . . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . Galina Jir´ askov´ a Operations on Unambiguous Finite Automata

  6. . Why Operations on Unambiguous Finite Automata? . . Motivation for me:-) . conference trip at DLT 2008 (Kyoto): A. Okhotin - ... ”What is the complexity of complementation on UFAs?” operations on unary UFAs investigated by him in 2012 - lower bound n 2 − o (1) for complementation the second problem for which ”give me a large enough alphabet” method didn’t work ... . . . . . . . . . . . . . . . . . . . . . .. . .. . .. . .. . .. . .. . .. . .. . .. . . .. . .. .. . .. . .. . .. . .. . .. . .. . .. . .. . Galina Jir´ askov´ a Operations on Unambiguous Finite Automata

  7. . Lower Bounds Methods I . . Well known: To prove that a DFA is minimal, show that . - all its states are reachable, and - no two distinct states are equivalent. . . Well known(?): To prove that an NFA is minimal, describe . a fooling set for the accepted language. . . For UFAs: rank of matrices [Schmidt 78, Leung 05]: . Let N be an NFA. Let M N be the matrix in which rows indexed by non-empty reachable sets columns indexed by non-empty co-reachable sets in entry ( S , T ) we have 0/1 if S and T are/are not disjoint. Then every UFA for L ( N ) has at least rank( M N ) states. . . . . . . . . . . . . . . . . . . . . . .. . .. . .. . .. . .. . .. . .. . .. . . .. . .. . .. .. . .. . .. . .. . .. . .. . .. . .. . .. . Galina Jir´ askov´ a Operations on Unambiguous Finite Automata

  8. . Lower Bounds Methods II . . Lemma (Leung 1998, Lemma 3) . Let M n be the (2 n − 1) × (2 n − 1) matrix with • rows and columns indexed by non-empty subsets of { 1 , 2 , . . . , n } • M n ( S , T ) = 0 / 1 iff S and T are/are not disjoint. Then rank(M n ) = 2 n − 1 . . . Corollary . If each non-empty set is co-reachable in NFA N, then every UFA equivalent to N has ≥ | non-empty reachable | states. . . . . . . . . . . . . . . . . . . . . . .. . .. . .. . .. . .. . .. . .. . .. . . .. . .. .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . Galina Jir´ askov´ a Operations on Unambiguous Finite Automata

  9. . The Complexity of Regular Operations on DFAs . . Maslov 1970 . . . . . . . . . . . . . . . . . . . . . . .. . .. . .. . .. . .. . .. . .. . .. . .. . . .. . .. .. . .. . .. . .. . .. . .. . .. . .. . .. . Galina Jir´ askov´ a Operations on Unambiguous Finite Automata

  10. . A General Formulation of the Problem . . Maslov 1970 . ”We have languages L ( A i ) (1 ≤ i ≤ k ) recognized by automata A i with n i states, respectively, and a k-ary regular operation f . What is the maximal number of states of a minimal automaton recognizing f ( L ( A 1 ) , . . . , L ( A k )) , for the given n i ?” . In this paper: - automata are unambiguous (UFAs) - f : intersection, reversal, shuffle, star and positive closure, left and right quotients, concatenation, complementation, and union . . . . . . . . . . . . . . . . . . . . .. . .. . .. . .. . .. . .. . .. . .. . . .. . .. .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . Galina Jir´ askov´ a Operations on Unambiguous Finite Automata

  11. . Intersection on Unambiguous Finite Automata . . Intersection: K ∩ L = { w | w ∈ K and w ∈ L } . . Known results for intersection: . DFA: mn binary [Maslov 1970] NFA: mn binary [Holzer & Kutrib 2003] . . Our result for intersection on UFAs: . . UFA: mn | Σ | ≥ 2 . Proof sketch: . upper bound: given UFAs A and B , construct the direct product automaton A × B ; it is a UFA lower bound: the witnesses in [HK’03] for NFA intersection are deterministic, so UFAs . . . . . . . . . . . . . . . . . . . . . .. . .. . .. . .. . .. . .. . .. . .. . . .. .. . . .. .. . .. . .. . .. . .. . .. . .. . .. . .. . Galina Jir´ askov´ a Operations on Unambiguous Finite Automata

  12. . Shuffle on Unambiguous Finite Automata . . Shuffle: K � L = { u 1 v 1 u 2 v 2 · · · u k v k | u 1 u 2 · · · u k ∈ K and v 1 v 2 · · · v k ∈ L } . . Known results for shuffle: . DFA: ??? 2 mn − 1 in-DFA: 5-letter [Cˆ ampeanu, Salomaa & Yu 2002] NFA: mn binary [G. J. & Masopust, DLT 2010] . . Our result for shuffle on UFAs: . 2 mn − 1 . UFA: | Σ | ≥ 5 . Proof sketch for lower bound: . take the witness incomplete DFAs from [CSY’02] in the mn -state NFA for shuffle - each non-empty set is reachable [CSY’02] - each non-empty set is co-reachable . . . . . . . . . . . . . . . . . . . . . .. . .. . .. . .. . .. . .. . .. . .. . . .. . .. . .. .. . .. . .. . .. . .. . .. . .. . .. . .. . Galina Jir´ askov´ a Operations on Unambiguous Finite Automata

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend