operational semantics coalgebraically
play

Operational Semantics Coalgebraically Bartek Klin University of - PowerPoint PPT Presentation

Operational Semantics Coalgebraically Bartek Klin University of Cambridge, Warsaw University CMCS, Paphos, 27/03/10 Summary Structural Operational Semantics is about Defining transition relations by induction CMCS, Paphos, 27/03/10 2 / 37


  1. � � � � � � Bialgebras g h � X � BX Σ X - bialgebra: Bg λ Σ h λ X � B Σ X Σ BX g h � Σ X X BX morphisms: Σ f f Bf k l � Y � BY Σ Y Bialgebras are (co)algebras: = Σ λ -alg ∼ λ -bialg ∼ = B λ -coalg CMCS, Paphos, 27/03/10 10 / 37

  2. � � � � � More benefits λ : Σ B = ⇒ B Σ λ Z � B Σ Z Σ z � Σ BZ Σ Z g Bg � BZ Z z a Σ A A Σ h h � B Σ A � BA Σ BA λ A Ba CMCS, Paphos, 27/03/10 11 / 37

  3. � � � � � More benefits λ : Σ B = ⇒ B Σ λ Z � B Σ Z Σ z � Σ BZ Σ Z the final bialgebra g Bg � BZ Z z a Σ A A the initial bialgebra Σ h h � B Σ A � BA Σ BA λ A Ba CMCS, Paphos, 27/03/10 11 / 37

  4. � � � � Bisimilarity as a congruence h � a Σ A A BA ∼ = Σ f f Bf = � BZ ∼ � Z Σ Z g z The kernel relation of is: f - bisimilarity on , h - a congruence on . a CMCS, Paphos, 27/03/10 12 / 37

  5. � � � � Bisimilarity as a congruence h � a Σ A A BA ∼ = Σ f f Bf = � BZ ∼ � Z Σ Z g z The kernel relation of is: f Bisimilarity is - bisimilarity on , h a congruence - a congruence on . a CMCS, Paphos, 27/03/10 12 / 37

  6. � � � � Bisimilarity as a congruence h � a Σ A A BA ∼ = Σ f f Bf = � BZ ∼ � Z Σ Z g z The kernel relation of is: f Bisimilarity is - bisimilarity on , h a congruence - a congruence on . a For example, hence C [ alt ( a , a )] ≈ C [ a ] alt ( a , a ) ≈ a CMCS, Paphos, 27/03/10 12 / 37

  7. II. MORE DISTRIBUTIVE LAWS CMCS, Paphos, 27/03/10 13 / 37

  8. Another coinductive definition BX = A × X Z = A ω CMCS, Paphos, 27/03/10 14 / 37

  9. Another coinductive definition BX = A × X Z = A ω Define: zip : Z 2 → Z CMCS, Paphos, 27/03/10 14 / 37

  10. Another coinductive definition BX = A × X Z = A ω a 1 , a 2 , a 3 , a 4 , a 5 , . . . Define: zip : Z 2 → Z b 1 , b 2 , b 3 , b 4 , b 5 , . . . CMCS, Paphos, 27/03/10 14 / 37

  11. Another coinductive definition BX = A × X Z = A ω a 1 , a 2 , a 3 , a 4 , a 5 , . . . Define: zip : Z 2 → Z b 1 , b 2 , b 3 , b 4 , b 5 , . . . CMCS, Paphos, 27/03/10 14 / 37

  12. Another coinductive definition BX = A × X Z = A ω a 1 , a 2 , a 3 , a 4 , a 5 , . . . Define: zip : Z 2 → Z b 1 , b 2 , b 3 , b 4 , b 5 , . . . zip a 1 , b 1 , a 2 , b 2 , a 3 , . . . CMCS, Paphos, 27/03/10 14 / 37

  13. � � Another coinductive definition BX = A × X Z = A ω a 1 , a 2 , a 3 , a 4 , a 5 , . . . Define: zip : Z 2 → Z b 1 , b 2 , b 3 , b 4 , b 5 , . . . zip a 1 , b 1 , a 2 , b 2 , a 3 , . . . z 2 � ( BZ ) 2 λ � B ( Z 2 ) Z 2 B ( zip ) zip � BZ Z z CMCS, Paphos, 27/03/10 14 / 37

  14. � � Another coinductive definition BX = A × X Z = A ω a 1 , a 2 , a 3 , a 4 , a 5 , . . . Define: zip : Z 2 → Z b 1 , b 2 , b 3 , b 4 , b 5 , . . . zip a 1 , b 1 , a 2 , b 2 , a 3 , . . . z 2 � ( BZ ) 2 λ � B ( Z 2 ) Z 2 λ ( a, σ , b, τ ) a, ( b :: τ , σ ) = B ( zip ) zip � BZ Z z CMCS, Paphos, 27/03/10 14 / 37

  15. � � Another coinductive definition BX = A × X Z = A ω a 1 , a 2 , a 3 , a 4 , a 5 , . . . Define: zip : Z 2 → Z b 1 , b 2 , b 3 , b 4 , b 5 , . . . zip a 1 , b 1 , a 2 , b 2 , a 3 , . . . z 2 � ( BZ ) 2 λ � B ( Z 2 ) Z 2 λ ( a, σ , b, τ ) a, ( b :: τ , σ ) = B ( zip ) zip a → x ′ x a � BZ zip ( x, y ) → zip ( y, x ′ ) Z z CMCS, Paphos, 27/03/10 14 / 37

  16. � � Another coinductive definition BX = A × X Z = A ω a 1 , a 2 , a 3 , a 4 , a 5 , . . . Define: zip : Z 2 → Z b 1 , b 2 , b 3 , b 4 , b 5 , . . . zip a 1 , b 1 , a 2 , b 2 , a 3 , . . . z 2 � ( BZ ) 2 λ � B ( Z 2 ) Z 2 λ ( a, σ , b, τ ) a, ( b :: τ , σ ) = B ( zip ) zip a → x ′ x a � BZ zip ( x, y ) → zip ( y, x ′ ) Z z But this is not natural! CMCS, Paphos, 27/03/10 14 / 37

  17. � � Copointed coalgebras A distributive law definition of : zip � id ,z � 2 � ( Z × BZ ) 2 λ � B ( Z 2 ) Z 2 B ( zip ) zip � BZ Z z a → x ′ x ( x, a, x ′ , y, b, y ′ ) �→ a, ( y, x ′ ) a zip ( x, y ) → zip ( y, x ′ ) CMCS, Paphos, 27/03/10 15 / 37

  18. � � Copointed coalgebras A distributive law definition of : zip � id ,z � 2 � ( Z × BZ ) 2 λ � B ( Z 2 ) Z 2 B ( zip ) zip � BZ Z z a → x ′ x ( x, a, x ′ , y, b, y ′ ) �→ a, ( y, x ′ ) a zip ( x, y ) → zip ( y, x ′ ) λ : Σ (Id × B ) = ⇒ B Σ CMCS, Paphos, 27/03/10 15 / 37

  19. � � Copointed coalgebras A distributive law definition of : zip � id ,z � 2 � ( Z × BZ ) 2 λ � B ( Z 2 ) Z 2 B ( zip ) zip � BZ Z z a → x ′ x ( x, a, x ′ , y, b, y ′ ) �→ a, ( y, x ′ ) a zip ( x, y ) → zip ( y, x ′ ) λ : Σ (Id × B ) = ⇒ B Σ To gain the benefits, work with copointed coalgebras. CMCS, Paphos, 27/03/10 15 / 37

  20. Pointed algebras b 1 , b 2 , b 3 , b 4 , b 5 , . . . a/ − a/ − : Z → Z a, b 2 , b 3 , b 4 , b 5 , . . . CMCS, Paphos, 27/03/10 16 / 37

  21. � � Pointed algebras b 1 , b 2 , b 3 , b 4 , b 5 , . . . a/ − a/ − : Z → Z a, b 2 , b 3 , b 4 , b 5 , . . . ? Z BZ a/ − B ( a/ − ) � BZ Z z CMCS, Paphos, 27/03/10 16 / 37

  22. Pointed algebras b 1 , b 2 , b 3 , b 4 , b 5 , . . . a/ − a/ − : Z → Z a, b 2 , b 3 , b 4 , b 5 , . . . CMCS, Paphos, 27/03/10 16 / 37

  23. � � Pointed algebras b 1 , b 2 , b 3 , b 4 , b 5 , . . . a/ − a/ − : Z → Z a, b 2 , b 3 , b 4 , b 5 , . . . Σ z � Σ BZ λ � B ( Z + Σ Z ) Σ Z g B [id ,g ] � BZ Z z CMCS, Paphos, 27/03/10 16 / 37

  24. � � Pointed algebras b 1 , b 2 , b 3 , b 4 , b 5 , . . . a/ − a/ − : Z → Z a, b 2 , b 3 , b 4 , b 5 , . . . Σ z � Σ BZ λ � B ( Z + Σ Z ) Σ Z g B [id ,g ] � BZ Z z λ : BZ → B ( Z + Z ) b x → x ′ − b, x ′ �→ a, ι 1 ( x ′ ) a a/x → x ′ − CMCS, Paphos, 27/03/10 16 / 37

  25. � � Pointed algebras b 1 , b 2 , b 3 , b 4 , b 5 , . . . a/ − a/ − : Z → Z a, b 2 , b 3 , b 4 , b 5 , . . . Σ z � Σ BZ λ � B ( Z + Σ Z ) Σ Z g B [id ,g ] � BZ Z z λ : BZ → B ( Z + Z ) b x → x ′ − b, x ′ �→ a, ι 1 ( x ′ ) a a/x → x ′ − To gain the benefits, work with pointed algebras. CMCS, Paphos, 27/03/10 16 / 37

  26. Complex successors a → x ′ x − a f ( x ) → zip ( a , f ( x ′ )) − CMCS, Paphos, 27/03/10 17 / 37

  27. Complex successors a → x ′ x − λ : Σ B = ⇒ BT Σ a f ( x ) → zip ( a , f ( x ′ )) − free monad over Σ CMCS, Paphos, 27/03/10 17 / 37

  28. � � Complex successors a → x ′ x − λ : Σ B = ⇒ BT Σ a f ( x ) → zip ( a , f ( x ′ )) − free monad over Σ Σ z � Σ BZ λ � BT Σ Σ Z g Bg ♯ � BZ Z z CMCS, Paphos, 27/03/10 17 / 37

  29. � � Complex successors a → x ′ x − λ : Σ B = ⇒ BT Σ a f ( x ) → zip ( a , f ( x ′ )) − free monad over Σ Σ z � Σ BZ λ � BT Σ Σ Z g Bg ♯ � BZ Z z Here, work with E-M algebras for the monad T Σ CMCS, Paphos, 27/03/10 17 / 37

  30. � � Complex successors a → x ′ x − λ : Σ B = ⇒ BT Σ a f ( x ) → zip ( a , f ( x ′ )) − free monad over Σ Σ z � Σ BZ λ � BT Σ Σ Z g Bg ♯ � BZ Z z Here, work with E-M algebras for the monad T Σ Together with : λ : Σ (Id × B ) = ⇒ BT Σ zip CMCS, Paphos, 27/03/10 17 / 37

  31. Look-ahead CMCS, Paphos, 27/03/10 18 / 37

  32. Look-ahead a 1 , a 2 , a 3 , a 4 , a 5 , . . . odd odd : Z → Z a 1 , a 3 , a 5 , a 7 , ... CMCS, Paphos, 27/03/10 18 / 37

  33. Look-ahead a 1 , a 2 , a 3 , a 4 , a 5 , . . . odd odd : Z → Z a 1 , a 3 , a 5 , a 7 , ... a b x − → y − → z a odd ( x ) → odd ( z ) − CMCS, Paphos, 27/03/10 18 / 37

  34. Look-ahead a 1 , a 2 , a 3 , a 4 , a 5 , . . . odd odd : Z → Z a 1 , a 3 , a 5 , a 7 , ... a b x − → y − → z λ : Σ D B = ⇒ B Σ a odd ( x ) → odd ( z ) − CMCS, Paphos, 27/03/10 18 / 37

  35. Look-ahead a 1 , a 2 , a 3 , a 4 , a 5 , . . . odd odd : Z → Z a 1 , a 3 , a 5 , a 7 , ... a b x − → y − → z λ : Σ D B = ⇒ B Σ a odd ( x ) → odd ( z ) − cofree comonad over B CMCS, Paphos, 27/03/10 18 / 37

  36. � � Look-ahead a 1 , a 2 , a 3 , a 4 , a 5 , . . . odd odd : Z → Z a 1 , a 3 , a 5 , a 7 , ... a b x − → y − → z λ : Σ D B = ⇒ B Σ a odd ( x ) → odd ( z ) − cofree comonad over B Σ z ♭ � Σ D B Z λ Z � B Σ Z Σ Z g Bg � BZ Z z CMCS, Paphos, 27/03/10 18 / 37

  37. � � Monad over comonad The general case: λ : T Σ D B = ⇒ D B T Σ subject to laws T Σ z � T Σ D B Z λ z � D B T Σ Z T Σ Z g D B g � D B Z Z z CMCS, Paphos, 27/03/10 19 / 37

  38. � � Monad over comonad The general case: λ : T Σ D B = ⇒ D B T Σ subject to laws T Σ z � T Σ D B Z λ z � D B T Σ Z T Σ Z g D B g � D B Z Z z This subsumes all previous cases. CMCS, Paphos, 27/03/10 19 / 37

  39. III. STRUCTURAL OPERATIONAL SEMANTICS CMCS, Paphos, 27/03/10 20 / 37

  40. III. STRUCTURAL OPERATIONAL SEMANTICS BX = ( P ω X ) A CMCS, Paphos, 27/03/10 20 / 37

  41. Toy SOS example Σ X = 1 + A + X 2 BX = ( P ω X ) A a a → x ′ → y ′ − − x y a → x ′ ⊗ y ′ a x ⊗ y − → nil a − This defines: λ : Σ B = ⇒ B Σ CMCS, Paphos, 27/03/10 21 / 37

  42. Toy SOS example Σ X = 1 + A + X 2 BX = ( P ω X ) A a a → x ′ → y ′ − − x y a → x ′ ⊗ y ′ a x ⊗ y − → nil a − This defines: λ : Σ B = ⇒ B Σ Fact: the LTS induced by the rules is the initial -bialgebra. λ Hence, bisimilarity on it is a congruence. CMCS, Paphos, 27/03/10 21 / 37

  43. GSOS Laws correspond to rules: λ : Σ (Id × B ) = ⇒ BT Σ a ij b ik → y ij } 1 ≤ i ≤ n → } 1 ≤ i ≤ n { x i { x i � − − 1 ≤ j ≤ m i 1 ≤ k ≤ l i c f ( x 1 , . . . , x n ) − → t where - , are all distinct y ij x i - no other variables occur in t - there are finitely many rules for every , f c CMCS, Paphos, 27/03/10 22 / 37

  44. GSOS Laws correspond to rules: λ : Σ (Id × B ) = ⇒ BT Σ a ij b ik → y ij } 1 ≤ i ≤ n → } 1 ≤ i ≤ n { x i { x i � − − 1 ≤ j ≤ m i 1 ≤ k ≤ l i c f ( x 1 , . . . , x n ) − → t where no lookahead - , are all distinct y ij x i - no other variables occur in t - there are finitely many rules for every , f c CMCS, Paphos, 27/03/10 22 / 37

  45. GSOS Laws correspond to rules: λ : Σ (Id × B ) = ⇒ BT Σ a ij b ik → y ij } 1 ≤ i ≤ n → } 1 ≤ i ≤ n { x i { x i � − − 1 ≤ j ≤ m i 1 ≤ k ≤ l i c f ( x 1 , . . . , x n ) − → t where - , are all distinct y ij x i - no other variables occur in t - there are finitely many rules for every , f c CMCS, Paphos, 27/03/10 22 / 37

  46. GSOS Laws correspond to rules: λ : Σ (Id × B ) = ⇒ BT Σ a ij b ik → y ij } 1 ≤ i ≤ n → } 1 ≤ i ≤ n { x i { x i � − − 1 ≤ j ≤ m i 1 ≤ k ≤ l i c f ( x 1 , . . . , x n ) − → t where - , are all distinct y ij x i - no other variables occur in t - there are finitely many rules for every , f c This is GSOS, where bisimilarity is a congruence. CMCS, Paphos, 27/03/10 22 / 37

  47. Safe ntree Laws correspond to rules: λ : Σ D B = ⇒ B (Id + Σ ) b j a i { z i → y i } i ∈ I { w j � → } j ∈ J − − c f ( x 1 , . . . , x n ) − → t where - , are all distinct y i x i - no other variables occur in the rule - the graph of premises is well-founded - has depth at most 1 t - there are finitely many rules for every , f c CMCS, Paphos, 27/03/10 23 / 37

  48. Safe ntree Laws correspond to rules: λ : Σ D B = ⇒ B (Id + Σ ) b j a i { z i → y i } i ∈ I { w j � → } j ∈ J − − c f ( x 1 , . . . , x n ) − → t where - , are all distinct y i x i - no other variables occur in the rule - the graph of premises is well-founded - has depth at most 1 t - there are finitely many rules for every , f c This is the “safe” ntree format. CMCS, Paphos, 27/03/10 23 / 37

  49. Monad over comonad? complex successors λ : Σ (Id × B ) = ⇒ BT Σ look-ahead λ : Σ D B = ⇒ B (Id + Σ ) both? λ : T Σ D B = ⇒ D B T Σ CMCS, Paphos, 27/03/10 24 / 37

  50. Monad over comonad? complex successors λ : Σ (Id × B ) = ⇒ BT Σ look-ahead λ : Σ D B = ⇒ B (Id + Σ ) both? λ : T Σ D B = ⇒ D B T Σ But: a b − → y y � − → x a b → f ( k ) k f ( x ) − → k − does not induce an LTS! CMCS, Paphos, 27/03/10 24 / 37

  51. IV . FURTHER DEVELOPMENTS CMCS, Paphos, 27/03/10 25 / 37

  52. Probabilistic (reactive) GSOS BX = (1 + D ω X ) A D ω X = { φ : X → R + 0 | ♯ supp( φ ) < ω , � x φ ( x ) = 1 } λ : Σ (Id × B ) = ⇒ BT Σ ⇐ ⇒ � � � � � b j � a a − → x i � − → − → y j x i x i j a ∈ D i a ∈ B i 1 ≤ j ≤ k c,w f ( x 1 , . . . , x n ) − → t Probabilistic bisimilarity is a congruence. CMCS, Paphos, 27/03/10 26 / 37

  53. Stochastic GSOS BX = ( F X ) A F X = { φ : X → R + 0 | ♯ supp( φ ) < ω } λ : Σ (Id × B ) = ⇒ BT Σ ⇐ ⇒ � � � b j � a @ w ai x i x i j → y j − → − a ∈ D i , 1 ≤ i ≤ n 1 ≤ j ≤ k c,w f ( x 1 , . . . , x n ) → t − Stochastic bisimilarity is a congruence. CMCS, Paphos, 27/03/10 27 / 37

  54. Weighted GSOS BX = ( F X ) A F X = { φ : X → W | ♯ supp( φ ) < ω } λ : Σ (Id × B ) = ⇒ BT Σ ⇒ = � � b j � � a x i x i j → y j → w a,i − − a ∈ D i , 1 ≤ i ≤ n 1 ≤ j ≤ k c, β f ( x 1 , . . . , x n ) → t − Weighted bisimilarity is a congruence. CMCS, Paphos, 27/03/10 28 / 37

  55. Weighted GSOS any comm. monoid BX = ( F X ) A F X = { φ : X → W | ♯ supp( φ ) < ω } λ : Σ (Id × B ) = ⇒ BT Σ ⇒ = � � b j � � a x i x i j → y j → w a,i − − a ∈ D i , 1 ≤ i ≤ n 1 ≤ j ≤ k c, β f ( x 1 , . . . , x n ) → t − Weighted bisimilarity is a congruence. CMCS, Paphos, 27/03/10 28 / 37

  56. Timed SOS BX = {T ⇀ X | . . . } T a time domain (a comm. monoid with cancellation and linear specialization order) λ : T Σ D B = ⇒ D B T Σ ⇐ ⇒ t i { x i (0) → x i ( t i ) | t i ∈ T ∧ x i ( t i ) ↓ } 1 ≤ i ≤ n − t f ( x 1 (0) , . . . , x n (0)) → θ t − CMCS, Paphos, 27/03/10 29 / 37

  57. Name-passing GSOS Another underlying category: Nom (actually a bit more complicated...) λ : Σ ( | − | × B | − | ) = ⇒ BT Σ | − | ⇒ = c ?( a ) c ! d x → x ′ y → y ′ − − τ x || y → y || ([ d/a ] y ′ ) − “Wide open” bisimilarity a congruence. CMCS, Paphos, 27/03/10 30 / 37

  58. Other work - The “microcosm” interpretation GSOS rules operations on coalgebras CMCS, Paphos, 27/03/10 31 / 37

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend