one way to design the control law of a mini uav
play

ONE WAY TO DESIGN THE CONTROL LAW OF A MINI-UAV Projet c o l e - PowerPoint PPT Presentation

ONE WAY TO DESIGN THE CONTROL LAW OF A MINI-UAV Projet c o l e N a t i o n a l e S u p r i e u r e d e M c a n i q u e e t d e s M i c r o t e c h n i q u e s Plan Introduction Model of the Drone


  1. ONE WAY TO DESIGN THE CONTROL LAW OF A MINI-UAV Projet É c o l e N a t i o n a l e S u p é r i e u r e d e M é c a n i q u e e t d e s M i c r o t e c h n i q u e s

  2.  Plan  Introduction  Model of the μ Drone  Control design of the MAV  Choice of the adjustment parameters  Conclusion É c o l e N a t i o n a l e S u p é r i e u r e d e M é c a n i q u e e t d e s M i c r o t e c h n i q u e s

  3.  Introduction  The ENSMM μ Drone This MAV uses six propellers to fly : - Two are counter-rotating and provide the lift - Two provide the trim stabilization - Two are used for the propulsion  Approximation of the MAV behaviour The model is a MIMO linear time-invariant system  Control design of the MAV The LQ state feedback regulator design is applied to a « standard model » To compute the weighting matrices of quadratic criterions we use a « partial observability gramian » The great advantage of this method is due to the use of only three scalars to synthesize a robust control law. É c o l e N a t i o n a l e S u p é r i e u r e d e M é c a n i q u e e t d e s M i c r o t e c h n i q u e s

  4.  Model of the μ Drone The μ Drone is a « gyrodyne » with six propellers We worked on the assumption that it can be described as seven solids in interaction  Model of the actuators Let denote the thrust produced by the ith actuator and the associated F M i i moment. If denotes the control input of the actuator, we assume that u i  Global model With this assumption and after linearization of the mecanical model in the vicinity of a horizontal trim, the following MIMO linear time-invariant system is an approximation of the MAV behaviour : É c o l e N a t i o n a l e S u p é r i e u r e d e M é c a n i q u e e t d e s M i c r o t e c h n i q u e s

  5.  Control design of the MAV  Standard model We introduce a constant perturbation vector : Initial model is then augmented :  Extraction of an observable subsystem É c o l e N a t i o n a l e S u p é r i e u r e d e M é c a n i q u e e t d e s M i c r o t e c h n i q u e s

  6.  State estimator • Gain matrix is chosen as the solution of the LQ problem : A positive scalar is to be designed so that k o k o and the weighting matrices where is a partial observability gramian É c o l e N a t i o n a l e S u p é r i e u r e d e M é c a n i q u e e t d e s M i c r o t e c h n i q u e s

  7. Partial observability gramian : where State estimator is then : É c o l e N a t i o n a l e S u p é r i e u r e d e M é c a n i q u e e t d e s M i c r o t e c h n i q u e s

  8.  Uncontrollable modes influence rejection • Controllability staircase form of x uncontrollable modes perturb controllable ones nc • Rejection with a linear transformation leading to : É c o l e N a t i o n a l e S u p é r i e u r e d e M é c a n i q u e e t d e s M i c r o t e c h n i q u e s

  9. It is often possible to find such as : with these conditions : A state feedback is then possible… É c o l e N a t i o n a l e S u p é r i e u r e d e M é c a n i q u e e t d e s M i c r o t e c h n i q u e s

  10.  Control feedback • New LQ problem choice of the weighting matrices define another positive scalar , a positive control horizon k T c c such as : and the partial observability gramian : É c o l e N a t i o n a l e S u p é r i e u r e d e M é c a n i q u e e t d e s M i c r o t e c h n i q u e s

  11. • Feedback control elaboration with this feedback control the system is : and we want at permanent rate : If that matrix is invertible, the solution is : É c o l e N a t i o n a l e S u p é r i e u r e d e M é c a n i q u e e t d e s M i c r o t e c h n i q u e s

  12. Then, the control vector is : and the use of transformation matrix leads to T oc • Regulator equations with É c o l e N a t i o n a l e S u p é r i e u r e d e M é c a n i q u e e t d e s M i c r o t e c h n i q u e s

  13.  Choice of the adjustment parameters  First step , Assign a fixed value to Adjust filtering horizon so that is a stability matrix. T A o reg  Second step (quantify the stability robustness) The regulator, without reference, is converted to a transfer matrix with É c o l e N a t i o n a l e S u p é r i e u r e d e M é c a n i q u e e t d e s M i c r o t e c h n i q u e s

  14. • Similarly, initial model of the MAV is converted to • Now define - Loop transfers - Static margin - Dynamic margin • When is a stability matrix, feedback is robust in relation to : A reg and É c o l e N a t i o n a l e S u p é r i e u r e d e M é c a n i q u e e t d e s M i c r o t e c h n i q u e s

  15.  Last step Now it is not difficult to compute static and dynamic margins for different values of the three parameters : - Filtering horizon T o - Shape factor k o - Recovery factor k c The reasons why this strategy is often efficient is due to : - The natural robustness of a LQ problem solution - The notion of loop transfer recovery (LTR) É c o l e N a t i o n a l e S u p é r i e u r e d e M é c a n i q u e e t d e s M i c r o t e c h n i q u e s

  16.  Implementation on the μ Drone T 1.2 s o Static margin : M 42.2% st k 1.2 o Dynamic margin : M 32.7 ms dyn k 3.2 c É c o l e N a t i o n a l e S u p é r i e u r e d e M é c a n i q u e e t d e s M i c r o t e c h n i q u e s

  17. É c o l e N a t i o n a l e S u p é r i e u r e d e M é c a n i q u e e t d e s M i c r o t e c h n i q u e s

  18.  Conclusion  The proposed method is quite easy to use Only three positive scalars have to be adjusted  Tricky problems Rejection of uncontrollable modes is not always possible Internal stability of regulator is sometimes difficult to reach  Philippe de Larminat’s recent book in which this method is explained in detail is of great interest. É c o l e N a t i o n a l e S u p é r i e u r e d e M é c a n i q u e e t d e s M i c r o t e c h n i q u e s

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend