on whitham s modulated equations for the euler korteweg
play

On Whithams modulated equations for the EulerKorteweg system S. - PowerPoint PPT Presentation

On Whithams modulated equations for the EulerKorteweg system S. Benzoni-Gavage P. Noble L.M. Rodrigues Institut Camille Jordan Universit e Claude Bernard Lyon 1 June 26, 2012 1 / 21 The EulerKorteweg system and travelling waves


  1. On Whitham’s modulated equations for the Euler–Korteweg system S. Benzoni-Gavage P. Noble L.M. Rodrigues Institut Camille Jordan Universit´ e Claude Bernard Lyon 1 June 26, 2012 1 / 21

  2. The Euler–Korteweg system and travelling waves Outline The Euler–Korteweg system and travelling waves 1 Modulated equations and periodic waves 2 2 / 21

  3. ② The Euler–Korteweg system and travelling waves General model for isothermal capillary fluids Euler–Lagrange equations for Lagrangian 1 2 ρ � u � 2 − E ( ρ, ∇ ρ ) − ρ∂ t ϕ − ρ u · ∇ ϕ in coordinates ( ρ, ϕ, p ) � ∂ t ρ + div ( ρ u ) = 0 , ✇ ∂ t u + ( u · ∇ ) u + ∇ (E ρ E ) = 0 , ρ = density, u = velocity, E = free energy density, E ρ E = variational derivative of E . 3 / 21

  4. The Euler–Korteweg system and travelling waves General model for isothermal capillary fluids Euler–Lagrange equations for Lagrangian 1 2 ρ � u � 2 − E ( ρ, ∇ ρ ) − ρ∂ t ϕ − ρ u · ∇ ϕ in coordinates ( ρ, ϕ, p ) � ∂ t ρ + div ( ρ u ) = 0 , ✇ ∂ t u + ( u · ∇ ) u + ∇ (E ρ E ) = 0 , ρ = density, u = velocity, E = free energy density, E ρ E = variational derivative of E . Standard compressible fluids: E = E ( ρ ), E ρ E = d E d ρ . ② ‘compressible’ Euler equations. 3 / 21

  5. The Euler–Korteweg system and travelling waves General model for isothermal capillary fluids Euler–Lagrange equations for Lagrangian 1 2 ρ � u � 2 − E ( ρ, ∇ ρ ) − ρ∂ t ϕ − ρ u · ∇ ϕ in coordinates ( ρ, ϕ, p ) � ∂ t ρ + div ( ρ u ) = 0 , ✇ ∂ t u + ( u · ∇ ) u + ∇ (E ρ E ) = 0 , ρ = density, u = velocity, E = free energy density, E ρ E = variational derivative of E . Standard compressible fluids: E = E ( ρ ), E ρ E = d E d ρ . ② ‘compressible’ Euler equations. � ∂ E � Capillary fluids: E = E ( ρ, ∇ ρ ), E ρ E := ∂ E ∂ρ − � d . j =1 D x j ∂ρ x j 3 / 21

  6. ② ② The Euler–Korteweg system and travelling waves Special cases Korteweg capillarity theory (after Rayleigh, van der Waals,...), see [Rowlinson & Widom’82] E ( ρ, ∇ ρ ) = F ( ρ ) + 1 2 K ( ρ ) �∇ ρ � 2 . 4 / 21

  7. ② The Euler–Korteweg system and travelling waves Special cases Korteweg capillarity theory (after Rayleigh, van der Waals,...), see [Rowlinson & Widom’82] E ( ρ, ∇ ρ ) = F ( ρ ) + 1 2 K ( ρ ) �∇ ρ � 2 . Quantum fluids (Schr¨ odinger, Madelung, Gross–Pitaevskii) F ′ ( ρ ) − ∆ √ ρ � � ∂ t ρ + div ( ρ u ) = 0 , ∂ t u + ( u · ∇ ) u + ∇ 2 √ ρ = 0 . ② ρ K ( ρ ) ≡ 1 4 . 4 / 21

  8. The Euler–Korteweg system and travelling waves Special cases Korteweg capillarity theory (after Rayleigh, van der Waals,...), see [Rowlinson & Widom’82] E ( ρ, ∇ ρ ) = F ( ρ ) + 1 2 K ( ρ ) �∇ ρ � 2 . Quantum fluids (Schr¨ odinger, Madelung, Gross–Pitaevskii) F ′ ( ρ ) − ∆ √ ρ � � ∂ t ρ + div ( ρ u ) = 0 , ∂ t u + ( u · ∇ ) u + ∇ 2 √ ρ = 0 . ② ρ K ( ρ ) ≡ 1 4 . Vortex-filaments (Levi-Civita & Da Rios, Hasimoto), see [Arnold & Khesin’98] √ ρ � ρ � 4 + ∂ 2 x ∂ t ρ + ∂ x ( ρ u ) = 0 , ∂ t u + u ∂ x u = ∂ x . 2 √ ρ 8 ρ 2 , d = 1. ② ρ K ( ρ ) ≡ 1 4 , F ( ρ ) = − 1 4 / 21

  9. ⑨❡ ⑨❡ ⑨❡ ⑨❡ ⑨❡ ⑨❡ The Euler–Korteweg system and travelling waves Two formulations of 1D model Eulerian coordinates � ∂ t ρ + ∂ x ( ρ u ) = 0 , ∂ t u + u ∂ x u + ∂ x (E ρ E ) = 0 , ρ = density, u = velocity, E = E ( ρ, ρ x ) energy density, � ∂ E � E ρ E := ∂ E ∂ρ − D x ∂ρ x 5 / 21

  10. The Euler–Korteweg system and travelling waves Two formulations of 1D model Mass Lagrangian coordinates Eulerian coordinates � � ∂ t ρ + ∂ x ( ρ u ) = 0 , d t v = ∂ y u , ∂ t u + u ∂ x u + ∂ x (E ρ E ) = 0 , d t u = ∂ y (E v ⑨❡ ) , ρ = density, u = velocity, v = specific volume, u = velocity, E = E ( ρ, ρ x ) energy density, ⑨❡ = ⑨❡ ( v , v y ) specific energy, � ∂ E � ∂ ⑨❡ � � E ρ E := ∂ E E v ⑨❡ := ∂ ⑨❡ ∂ρ − D x ∂ v − D y ∂ρ x ∂ v y 5 / 21

  11. The Euler–Korteweg system and travelling waves Two formulations of 1D model Mass Lagrangian coordinates Eulerian coordinates � � ∂ t ρ + ∂ x ( ρ u ) = 0 , d t v = ∂ y u , ( ∂ t + u ∂ x ) u + ∂ x (E ρ E ) = 0 , d t u = ∂ y (E v ⑨❡ ) , ρ = density, u = velocity, v = specific volume, u = velocity, E = E ( ρ, ρ x ) energy density, ⑨❡ = ⑨❡ ( v , v y ) specific energy, � ∂ E � ∂ ⑨❡ � � E ρ E := ∂ E E v ⑨❡ := ∂ ⑨❡ ∂ρ − D x ∂ v − D y ∂ρ x ∂ v y d y = ρ d x − ρ u d t ⇔ d x = v d y + u d t 5 / 21

  12. The Euler–Korteweg system and travelling waves Two formulations of 1D model Mass Lagrangian coordinates Eulerian coordinates � � ∂ t ρ + ∂ x ( ρ u ) = 0 , d t v = ∂ y u , ∂ t u + u ∂ x u + ∂ x (E ρ E ) = 0 , d t u = ∂ y (E v ⑨❡ ) , ρ = density, u = velocity, v = specific volume, u = velocity, E = E ( ρ, ρ x ) energy density, ⑨❡ = ⑨❡ ( v , v y ) specific energy, � ∂ E � ∂ ⑨❡ � � E ρ E := ∂ E E v ⑨❡ := ∂ ⑨❡ ∂ρ − D x ∂ v − D y ∂ρ x ∂ v y d y = ρ d x − ρ u d t ⇔ d x = v d y + u d t ∂ x (E ρ E ) = − ∂ y (E v ⑨❡ ) 5 / 21

  13. The Euler–Korteweg system and travelling waves More special cases Korteweg / Cahn–Hilliard energy again E ( ρ, ρ x ) = F ( ρ ) + 1 ⑨❡ ( v , v y ) = f ( v ) + 1 2 K ( ρ ) ρ 2 2 κ ( v ) v 2 ⇔ y , x κ ( v ) := ρ 5 K ( ρ ) . with F ( ρ ) = ρ f ( v ) , Water waves [Boussinesq’72], [Bona & Sachs’88]: v 3 gH 3 ∂ 3 2 H v 2 ) = 1 3 ∂ t v = ∂ y u , ∂ t u − gH ∂ y ( v + y v , g H 3 gH 3 , f ( v ) = 1 2 gH v 2 (1 + v ② κ = − 1 H ). y 6 / 21

  14. The Euler–Korteweg system and travelling waves More special cases Korteweg / Cahn–Hilliard energy again E ( ρ, ρ x ) = F ( ρ ) + 1 ⑨❡ ( v , v y ) = f ( v ) + 1 2 K ( ρ ) ρ 2 2 κ ( v ) v 2 ⇔ y , x κ ( v ) := ρ 5 K ( ρ ) . with F ( ρ ) = ρ f ( v ) , Water waves [Boussinesq’72], [Bona & Sachs’88]: v 3 gH 3 ∂ 3 2 H v 2 ) = 1 3 ∂ t v = ∂ y u , ∂ t u − gH ∂ y ( v + y v , g H 3 gH 3 , f ( v ) = 1 2 gH v 2 (1 + v ② κ = − 1 H ). y van der Waals fluids 6 / 21

  15. The Euler–Korteweg system and travelling waves Travelling wave profiles Eulerian coordinates Lagrangian coordinates ( ρ, u ) = ( R , U )( x − σ t ) solution of ( v , u ) = ( V , W )( y + jt ) solution of � � ∂ t ρ + ∂ x ( ρ u ) = 0 , d t v = ∂ y u , ∂ t u + u ∂ x u + ∂ x (E ρ E ) = 0 , d t u = ∂ y (E v ⑨❡ ) , � � ∂ ξ ( R ( U − σ )) = 0 , ∂ ζ ( W − j V ) = 0 , iff iff ( U − σ ) ∂ ξ U + ∂ ξ (E ρ E ) = 0 . ∂ ζ (E v ⑨❡ − j W ) = 0 . 7 / 21

  16. The Euler–Korteweg system and travelling waves Travelling wave profiles Eulerian coordinates Lagrangian coordinates ( ρ, u ) = ( R , U )( x − σ t ) solution of ( v , u ) = ( V , W )( y + jt ) solution of � � ∂ t ρ + ∂ x ( ρ u ) = 0 , d t v = ∂ y u , ∂ t u + u ∂ x u + ∂ x (E ρ E ) = 0 , d t u = ∂ y (E v ⑨❡ ) , � � R ( U − σ ) ≡ j , W − j V ≡ σ , iff iff ( U − σ ) ∂ ξ U + ∂ ξ (E ρ E ) = 0 . ∂ ζ (E v ⑨❡ − j W ) = 0 . 7 / 21

  17. The Euler–Korteweg system and travelling waves Travelling wave profiles Eulerian coordinates Lagrangian coordinates ( ρ, u ) = ( R , U )( x − σ t ) solution of ( v , u ) = ( V , W )( y + jt ) solution of � � ∂ t ρ + ∂ x ( ρ u ) = 0 , d t v = ∂ y u , ∂ t u + u ∂ x u + ∂ x (E ρ E ) = 0 , d t u = ∂ y (E v ⑨❡ ) , � � R ( U − σ ) ≡ j , W − j V ≡ σ , iff iff ( U − σ ) ∂ ξ U + ∂ ξ (E ρ E ) = 0 . ∂ ζ (E v ⑨❡ − j W ) = 0 . R ( ξ ) V ( Z ( ξ )) = 1 , U ( ξ ) = W ( Z ( ξ )) , d Z 1 d ξ = R = V ( Z ) . 7 / 21

  18. The Euler–Korteweg system and travelling waves Travelling wave profiles Eulerian coordinates Lagrangian coordinates ( ρ, u ) = ( R , U )( x − σ t ) solution of ( v , u ) = ( V , W )( y + jt ) solution of � � ∂ t ρ + ∂ x ( ρ u ) = 0 , d t v = ∂ y u , ∂ t u + u ∂ x u + ∂ x (E ρ E ) = 0 , d t u = ∂ y (E v ⑨❡ ) , � � R ( U − σ ) ≡ j , W − j V ≡ σ , iff iff ( U − σ ) ∂ ξ U + ∂ ξ (E ρ E ) = 0 . ∂ ζ (E v ⑨❡ − j W ) = 0 . R ( ξ ) V ( Z ( ξ )) = 1 , U ( ξ ) = W ( Z ( ξ )) , d Z 1 d ξ = R = V ( Z ) . Proposition Relationships above yield a one-to-one correspondence between Eulerian travelling waves s.t. R ( R ) is compact in R + ∗ , and Lagrangian travelling waves s.t. V ( R ) is compact in R + ∗ . 7 / 21

  19. The Euler–Korteweg system and travelling waves Key to one-to-one correspondence • PDEs solutions, Eulerian vs mass Lagrangian coordinates: x ↔ ξ ↔ y . ρ ( χ ( ξ, t ) , t ) v ( y ( χ ( ξ, t ) , t ) , t ) = 1 , u ( χ ( ξ, t ) , t ) = w ( y ( χ ( ξ, t ) , t ) , t ) , � ∂ t χ = u ( χ, t ) , � y ( χ ( ξ, t ) , t ) = y 0 ( ξ ) , χ ( ξ, 0) = ξ , y 0 ′ ( ξ ) = ρ ( ξ, 0) . 8 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend