boundary layer problem navier stokes equations and euler
play

Boundary Layer problem: Navier-Stokes equations and Euler equations - PowerPoint PPT Presentation

Outline Statement of the problem - Vanishing viscosity limit First main result Second main result Conclusion Boundary Layer problem: Navier-Stokes equations and Euler equations Nikolai Chemetov Joint work with F. Cipriano CMAF-UL 1 / 24


  1. Outline Statement of the problem - Vanishing viscosity limit First main result Second main result Conclusion Boundary Layer problem: Navier-Stokes equations and Euler equations Nikolai Chemetov Joint work with F. Cipriano CMAF-UL 1 / 24

  2. Outline Statement of the problem - Vanishing viscosity limit First main result Second main result Conclusion 1 Statement of the problem - Vanishing viscosity limit 2 First main result Estimates, independent of the viscosity Trace value of the vorticity Weak convergence 3 Second main result Estimates independent of the viscosity Strong convergence 4 Conclusion 2 / 24

  3. Outline Statement of the problem - Vanishing viscosity limit First main result Second main result Conclusion Navier-Stokes equations. Dirichlet condition  v t + div ( v ⊗ v ) − ▽ p = ν ∆ v in Ω T := Ω × (0 , T ) ,      div v = 0 in Ω T := Ω × (0 , T ) ,     v ( x , 0) = v 0 ( x ) , x ∈ Ω .  Homogeneous Dirichlet boundary condition v = 0 on Γ T := Γ × (0 , T ) . 3 / 24

  4. Outline Statement of the problem - Vanishing viscosity limit First main result Second main result Conclusion Bucur D., Feireisl E., Necasova S., Boundary Behavior of Viscous Fluids: influence of wall roughness ..., Arch. Rational Mech. Anal. , 197 , (2010). Priezjev N.V., Troian S.M., Influence of periodic wall roughness on the slip behavior at liquid/solid interfaces: ..., J. Fluid Mech. , 554 , (2006). 4 / 24

  5. Outline Statement of the problem - Vanishing viscosity limit First main result Second main result Conclusion Navier-slip condition Flux of the fluid through the boundary Γ � v · n = a on Γ T with a d x = 0 , ∀ t ∈ [0 , T ] , Γ Navier´s slip boundary condition 2 D ( v )n · s + α v · s = β on Γ T , D ( v ) = 1 2 [ ∇ v + ( ∇ v ) T ] - the rate-of-strain tensor; n and s - the external normal and the tangent vector to Γ. α, β describe physical properties of Γ . 5 / 24

  6. Outline Statement of the problem - Vanishing viscosity limit First main result Second main result Conclusion Vorticity formulation The Navier-Stokes equations in terms of the vorticity ω = ∂ x 1 v 2 − ∂ x 2 v 1 and the velocity v  ∂ t ω + div ( v ω ) = ν ∆ ω, div v = 0 in Ω T ,  ω ( x , 0) = ω 0 ( x ) , x ∈ Ω with ω 0 := rot ( v 0 ) ,  v · n = a on Γ T . Navier slip boundary conditions in terms of the vorticity ω = b ( v ) on Γ T with b = β − 2 a ′ b ( v ) := ( α − 2 k ) v · s + b , s . 6 / 24

  7. Outline Statement of the problem - Vanishing viscosity limit First main result Second main result Conclusion The Euler equations are equivalent to the system  ∂ t ω + v ·∇ ω = 0 in Ω T ,      ω ( x , 0) = ω 0 ( x ) , x ∈ Ω with ω 0 := rot ( v 0 ) ,     v · n = a on Γ T .  The trajectories for the transport equation start at t = 0 and on the inflow region Γ − , where a < 0. The Navier-slip boundary condition is given just on Γ − ω = b ( v ) . 7 / 24

  8. Outline Statement of the problem - Vanishing viscosity limit First main result Second main result Conclusion Homogeneous case Navier-Stokes equations with v · n = 0 , ω = ( α − 2 k ) v · s on Γ Euler equations with v · n = 0 on Γ For α = 2 k : Lions P.-L., Math. Topics in Fluid Mechanics (1996) Beir˜ ao da Veiga H., Crispo F., J. Math. Fluid Mech., 13, (2011) For α � = 2 k : Clopeau T., Mikelic A., Robert R., Nonlinearity 11 , (1998) Lopes Filho M.C., Nussenzveig Lopes H.J., Planas G., SIAM Math. Anal. , 36 , 4, (2005) Kelliher J., SIAM J. Math. Anal. 38 , 1, (2006) 8 / 24

  9. Outline Statement of the problem - Vanishing viscosity limit First main result Second main result Conclusion Non-Homogeneous case We consider the boundary conditions � v · n = a , ω = b ( v ) on Γ for the Navier-Stokes equations and � v · n = a on Γ , Γ − ω = b ( v ) on for the Euler equations. 9 / 24

  10. Outline Statement of the problem - Vanishing viscosity limit First main result Second main result Conclusion Solvability results of the Euler equations In L p for any p ∈ (1 , ∞ ] : Chemetov N.V., Antontsev S.N., Physica D: Nonlinear Phenomena, 237 , 1, (2008). Chemetov N.V., Cipriano F.; Gavrilyuk, S., Math. Methods Appl. Sci. 33 , 6, (2010). 10 / 24

  11. Outline Statement of the problem - Vanishing viscosity limit First main result Second main result Conclusion First main result Theorem 1 − 1 a ∈ L ∞ (0 , T ; W 1 p (Γ)) ∩ W 1 Let 2 (0 , T ; W 2 (Γ)) , 2 b ∈ W 2 , 1 ω 0 ∈ W 2 p (Γ T ) , p (Ω) , ∀ p ∈ (2 , + ∞ ] . ∃ a subsequence of { ω ν , v ν } , solutions of the N-S: � ω ν ⇀ ω weakly-* in L ∞ (0 , T ; L p (Ω)) , v ν → v strongly in C (Ω T ) , � � � ω ( ψ t + v · ∇ ψ ) d x dt + ω 0 ψ ( x , 0) d x = a b ( v ) ψ d x dt Ω T Ω Γ − T for every ψ ∈ C 1 , 1 (Ω T ) with ψ = 0 at t = 0 and on Γ + . 11 / 24

  12. Outline Statement of the problem - Vanishing viscosity limit First main result Second main result Conclusion Sketch of the proof 1 st step : Estimates , independent of the viscosity Lemma ∃ a weak solution { ω ν , v ν } of the Navier-Stokes equations: || ω ν || L ∞ (0 , T ; L p (Ω)) � C , || v ν || L ∞ (0 , T ; W 1 p (Ω)) � C , || ∂ t v ν || L 2 (Ω T ) � C . 12 / 24

  13. Outline Statement of the problem - Vanishing viscosity limit First main result Second main result Conclusion 2 important estimates: � t � v ν ( t ) � 2 � v 0 � 2 f ( s ) � ω ν ( s ) � 2 � � L 2 (Ω) � C L 2 (Ω) + L p (Ω) ds + 1 0 and � t � ω ν ( t ) � 2 L p (Ω) � C ( � v ν ( t ) � 2 f ( s ) � ω ν ( s ) � 2 L 2 (Ω) + L p (Ω) ds + 1) , 0 where the constants C and f ( t ) ∈ L 1 (0 , T ) are independent of ν . 13 / 24

  14. Outline Statement of the problem - Vanishing viscosity limit First main result Second main result Conclusion 2 nd step : Trace value of the vorticity � Let B be an extension in Ω T of the initial condition B t =0 = ω 0 � � and boundary condition B Γ T = b ( v ν ) ; � d ( x )-the distance function from x ∈ Ω to Γ. Lemma � � 1 � | ω ν − B | | ( v ν ▽ d ) | − d x dt lim lim = 0 . σ σ → 0 + ν → 0 + Ω T ∩ [0 < d <σ ] 14 / 24

  15. Outline Statement of the problem - Vanishing viscosity limit First main result Second main result Conclusion 3 d step : Weak convergence Taking ν → 0: � ω ν ⇀ ω weakly-* in L ∞ (0 , T ; L p (Ω)) , v ν → v strongly in C (Ω T ) , we will obtain the Euler equation � � � ω ( ψ t + v · ∇ ψ ) d x dt + ω 0 ψ ( x , 0) d x = a b ( v ) ψ d x dt Ω T Ω Γ − T 15 / 24

  16. Outline Statement of the problem - Vanishing viscosity limit First main result Second main result Conclusion Second main result Theorem 2 a ∈ L ∞ (0 , T ; W 1 Let ω 0 ∈ L p (Ω) , p (Γ)) , − 1 b ∈ L 2 (0 , T ; W 1 p (Γ) ∩ W 1 p 2 (0 , T ; W (Γ)) , ∀ p ∈ (2 , + ∞ ] . p ∃ a subsequence of { ω ν , v ν } , solutions of N-S: � ω ν → ω strongly in L r (0 , T ; L p (Ω)) , ∀ r < ∞ , L r (0 , T ; W 1 v ν → v strongly in p (Ω)) , � � � � � β ( ω ) ψ t + v ·∇ ψ d x dt + β ( ω 0 ) ψ ( x , 0) d x = a β ( b ( v )) ψ d x dt Ω T Ω Γ − T holds for any β ∈ C ( R ) and any test function ψ. 16 / 24

  17. Outline Statement of the problem - Vanishing viscosity limit First main result Second main result Conclusion Sketch of the proof Uniform estimates Lemma ∃ a weak solution { ω ν , v ν } of N-S: || ω ν || L ∞ (0 , T ; L p (Ω)) C , � || v ν || L ∞ (0 , T ; W 1 C , || ∂ t ( v ν − ∇ A ) || L 2 (Ω T ) � C , � p (Ω)) where A is the solution of the system � − ∆ A = 0 in Ω , ∂ A ∂ n = a on Γ 17 / 24

  18. Outline Statement of the problem - Vanishing viscosity limit First main result Second main result Conclusion Strong convergence Malek J., Necas J., Rokyta M., Ruzicka M., Weak and measure-valued solutions to evolutionary PDEs. (1996). We denote h ( x ) = min { δ, d ( x ) } for any x ∈ Ω with a fixed δ > 0 . We consider the cut-off function ξ ν ( x ) := 1 − exp( − M + ν L h ( x )) , ∀ ν > 0 , ν with � v ν � L ∞ (Ω T ) � M , 18 / 24

  19. Outline Statement of the problem - Vanishing viscosity limit First main result Second main result Conclusion Multiplying the Navier-Stokes equations by η ′ ( ω ν ) ξ ν ψ, with η ∈ C 2 ( R ) convex and ψ ∈ C ∞ 0 ( R 2+1 ) non-negative , we obtain � η ( ω ν ) [ ψ t + v ν · ∇ ψ + ν ∆ ψ ] ξ ν + 2 ν η ( ω ν ) ( ∇ ψ · ∇ ξ ν ) d x dt Ω T � � + η ( ω 0 ) ψ ( x , 0) ξ ν d x − η ( ω ( x , T )) ψ ( x , T ) ξ ν d x Ω Ω � + ( M + ν L ) η ( b ) ψ d x dt � 0 Γ T 19 / 24

  20. Outline Statement of the problem - Vanishing viscosity limit First main result Second main result Conclusion v ν → v strongly in L ∞ (0 , T ; L 2 (Ω)) , | ω ν − c | + ⇀ z 1 , | ω ν − c | − ⇀ z 2 , ( ω ν − c ) ⇀ ω − c = z 1 − z 2 , weakly-* in L ∞ (0 , T ; L p (Ω)) , 20 / 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend