on the use of the damped newton method to solve direct
play

On the use of the damped Newton method to solve direct and - PowerPoint PPT Presentation

On the use of the damped Newton method to solve direct and controllability problems for parabolic PDEs A RNAUD M NCH Laboratoire de mathmatiques Blaise Pascal - Clermont-Ferrand - France RICAM- Linz - October 2019 ongoing works with Jrome


  1. On the use of the damped Newton method to solve direct and controllability problems for parabolic PDEs A RNAUD M ÜNCH Laboratoire de mathématiques Blaise Pascal - Clermont-Ferrand - France RICAM- Linz - October 2019 ongoing works with Jérome Lemoine (Clermont-Ferrand) and Irene Gayte (Sevilla) Arnaud Münch Least-Squares methods to solve direct and control problems

  2. Introduction - Main motivation The talk discusses the approximation of solution of a controllability problem for (nonlinear) PDEs through least-squares method. For instance, for the Navier-Stokes system: Given Ω ∈ R d , T > 0, find a sequence { y k , p k , v k } k > 0 converging (strongly) toward to a solution ( y , p , v ) of  y t − ν ∆ y + ( y · ∇ ) y + ∇ p = 0 , ∇ · y = 0 Ω × ( 0 , T ) ,   ∂ Ω × ( 0 , T ) , (1) y = v ,   y ( 0 ) = y 0 , Ω × { 0 } satisfying y ( T ) = u d , a trajectory (control of flows). • Largely open question in the context of nonlinear PDEs • Not straightforward issue, mainly because the fixed point operator (used to prove controllability result) is not a contraction ! Arnaud Münch Least-Squares methods to solve direct and control problems

  3. Outline Part 1 − Direct Problem for Steady NS - find a sequence ( y k , p k ) k > 0 converging strongly to a pair ( y , p ) solution of � ∇ · y = 0 α y − ν ∆ y + ( y · ∇ ) y + ∇ p = f + α g , Ω , (2) y = 0 , ∂ Ω . ( useful to solve Implicit time schemes for Unsteady NS .... ) Part 2 − Direct problem for Unsteady NS - find a sequence ( y k , p k ) k > 0 converging strongly to a pair ( y , p ) solution of  y t − ν ∆ y + ( y · ∇ ) y + ∇ p = f , ∇ · y = 0 Ω × ( 0 , T ) ,   y = 0 , ∂ Ω × ( 0 , T ) , (3)   y ( 0 ) = y 0 , Ω × { 0 } Part 3 − Controllability problem for a sub-linear (controllable) heat equation: find a sequence ( y k , v k ) k > 0 converging strongly to a pair ( y , v ) solution of  y t − ν ∆ y + g ( y ) = v 1 ω , Ω × ( 0 , T ) ,   y = 0 , ∂ Ω × ( 0 , T ) , (4)   y ( 0 ) = y 0 , Ω × { 0 } such that y ( · , T ) = 0. Arnaud Münch Least-Squares methods to solve direct and control problems

  4. Outline Part 1 − Direct Problem for Steady NS - find a sequence ( y k , p k ) k > 0 converging strongly to a pair ( y , p ) solution of � ∇ · y = 0 α y − ν ∆ y + ( y · ∇ ) y + ∇ p = f + α g , Ω , (2) y = 0 , ∂ Ω . ( useful to solve Implicit time schemes for Unsteady NS .... ) Part 2 − Direct problem for Unsteady NS - find a sequence ( y k , p k ) k > 0 converging strongly to a pair ( y , p ) solution of  y t − ν ∆ y + ( y · ∇ ) y + ∇ p = f , ∇ · y = 0 Ω × ( 0 , T ) ,   y = 0 , ∂ Ω × ( 0 , T ) , (3)   y ( 0 ) = y 0 , Ω × { 0 } Part 3 − Controllability problem for a sub-linear (controllable) heat equation: find a sequence ( y k , v k ) k > 0 converging strongly to a pair ( y , v ) solution of  y t − ν ∆ y + g ( y ) = v 1 ω , Ω × ( 0 , T ) ,   y = 0 , ∂ Ω × ( 0 , T ) , (4)   y ( 0 ) = y 0 , Ω × { 0 } such that y ( · , T ) = 0. Arnaud Münch Least-Squares methods to solve direct and control problems

  5. Outline Part 1 − Direct Problem for Steady NS - find a sequence ( y k , p k ) k > 0 converging strongly to a pair ( y , p ) solution of � ∇ · y = 0 α y − ν ∆ y + ( y · ∇ ) y + ∇ p = f + α g , Ω , (2) y = 0 , ∂ Ω . ( useful to solve Implicit time schemes for Unsteady NS .... ) Part 2 − Direct problem for Unsteady NS - find a sequence ( y k , p k ) k > 0 converging strongly to a pair ( y , p ) solution of  y t − ν ∆ y + ( y · ∇ ) y + ∇ p = f , ∇ · y = 0 Ω × ( 0 , T ) ,   y = 0 , ∂ Ω × ( 0 , T ) , (3)   y ( 0 ) = y 0 , Ω × { 0 } Part 3 − Controllability problem for a sub-linear (controllable) heat equation: find a sequence ( y k , v k ) k > 0 converging strongly to a pair ( y , v ) solution of  y t − ν ∆ y + g ( y ) = v 1 ω , Ω × ( 0 , T ) ,   y = 0 , ∂ Ω × ( 0 , T ) , (4)   y ( 0 ) = y 0 , Ω × { 0 } such that y ( · , T ) = 0. Arnaud Münch Least-Squares methods to solve direct and control problems

  6. Part 1 - Direct Problem for steady NS Part 1 − Direct Problem for Steady NS - Let Ω ⊂ R d , d ∈ { 2 , 3 } be a bounded connected open set with boundary ∂ Ω Lipschitz. V = { v ∈ D (Ω) d , ∇ · v = 0 } , H the closure of V in L 2 (Ω) d and V the closure of V in H 1 (Ω) d . Find a sequence ( y k , p k ) k > 0 converging strongly to a pair ( y , p ) solution of � ∇ · y = 0 α y − ν ∆ y + ( y · ∇ ) y + ∇ p = f + α g , Ω , (5) y = 0 , ∂ Ω . f ∈ H − 1 (Ω) d , g ∈ L 2 (Ω) d and α ∈ R ⋆ + . Arnaud Münch Least-Squares methods to solve direct and control problems

  7. Part 1- Weak formulation Let f ∈ H − 1 (Ω) d , g ∈ L 2 (Ω) d and α ∈ R ⋆ + . The weak formulation of (5) reads as follows: find y ∈ V solution of � � � � α y · w + ν ∇ y ·∇ w + y ·∇ y · w = < f , w > H − 1 (Ω) d × H 1 0 (Ω) d + α g · w , ∀ w ∈ V . Ω Ω Ω Ω (6) Proposition Assume Ω ⊂ R d is bounded and Lipschitz. There exists a least one solution y of (6) satisfying 2 ≤ c (Ω) α � y � 2 2 + ν �∇ y � 2 � f � 2 H − 1 (Ω) d + α � g � 2 (7) 2 ν for some constant c (Ω) > 0 . If moreover, Ω is C 2 and f ∈ L 2 (Ω) d , then y ∈ H 2 (Ω) d ∩ V . Remark- If  � � 1 2 + 1 � g � 2 αν � f � 2  d = 2 , , if  H − 1 (Ω) d  ν 2  Q ( g , f , α, ν ) := α 1 / 2 � � 2 + 1  � g � 2 αν � f � 2  d = 3 . , if   H − 1 (Ω) d ν 5 / 2 is small enough, then the solution of (6) is unique. Arnaud Münch Least-Squares methods to solve direct and control problems

  8. Part 1- Weak formulation Let f ∈ H − 1 (Ω) d , g ∈ L 2 (Ω) d and α ∈ R ⋆ + . The weak formulation of (5) reads as follows: find y ∈ V solution of � � � � α y · w + ν ∇ y ·∇ w + y ·∇ y · w = < f , w > H − 1 (Ω) d × H 1 0 (Ω) d + α g · w , ∀ w ∈ V . Ω Ω Ω Ω (6) Proposition Assume Ω ⊂ R d is bounded and Lipschitz. There exists a least one solution y of (6) satisfying 2 ≤ c (Ω) α � y � 2 2 + ν �∇ y � 2 � f � 2 H − 1 (Ω) d + α � g � 2 (7) 2 ν for some constant c (Ω) > 0 . If moreover, Ω is C 2 and f ∈ L 2 (Ω) d , then y ∈ H 2 (Ω) d ∩ V . Remark- If  � � 1 2 + 1 � g � 2 αν � f � 2  d = 2 , , if  H − 1 (Ω) d  ν 2  Q ( g , f , α, ν ) := α 1 / 2 � � 2 + 1  � g � 2 αν � f � 2  d = 3 . , if   H − 1 (Ω) d ν 5 / 2 is small enough, then the solution of (6) is unique. Arnaud Münch Least-Squares methods to solve direct and control problems

  9. V ′ -Least-squares method • We introduce the least-squares problem with E : V → R + as follows � inf y ∈ V E ( y ) := 1 ( α | v | 2 + |∇ v | 2 ) (8) 2 Ω where the corrector v ∈ V is the unique solution of � � � � � α v · w + ∇ v · ∇ w = − α y · w − ν ∇ y · ∇ w − y · ∇ y · w Ω Ω Ω Ω Ω � + < f , w > H − 1 (Ω) d × H 1 0 (Ω) d + α g · w , ∀ w ∈ V . Ω (9) • inf y ∈ V E ( y ) = 0 reached by a solution of (6). In this sense, the functional E is a so-called error functional which measures, through the corrector variable v , the deviation of the pair y from being a solution of (6). Remark- E ( y ) ≈ 1 2 � α y + ν B 1 ( y ) + B ( y , y ) − f + α g � 2 V ′ , � ( B 1 ( y ) , w ) := ( ∇ y , ∇ w ) 2 , ( B ( y , z ) , w ) := y ∇ z · w , y , z , w ∈ V Ω considered in 1 with experiments but without mathematical justification ! 1M. O. Bristeau, O. Pironneau, R. Glowinski, J. Periaux, and P . Perrier, On the numerical solution of nonlinear problems in fluid dynamics by least squares and finite element methods. CMAME (1979) Arnaud Münch Least-Squares methods to solve direct and control problems

  10. V ′ -Least-squares method • We introduce the least-squares problem with E : V → R + as follows � inf y ∈ V E ( y ) := 1 ( α | v | 2 + |∇ v | 2 ) (8) 2 Ω where the corrector v ∈ V is the unique solution of � � � � � α v · w + ∇ v · ∇ w = − α y · w − ν ∇ y · ∇ w − y · ∇ y · w Ω Ω Ω Ω Ω � + < f , w > H − 1 (Ω) d × H 1 0 (Ω) d + α g · w , ∀ w ∈ V . Ω (9) • inf y ∈ V E ( y ) = 0 reached by a solution of (6). In this sense, the functional E is a so-called error functional which measures, through the corrector variable v , the deviation of the pair y from being a solution of (6). Remark- E ( y ) ≈ 1 2 � α y + ν B 1 ( y ) + B ( y , y ) − f + α g � 2 V ′ , � ( B 1 ( y ) , w ) := ( ∇ y , ∇ w ) 2 , ( B ( y , z ) , w ) := y ∇ z · w , y , z , w ∈ V Ω considered in 1 with experiments but without mathematical justification ! 1M. O. Bristeau, O. Pironneau, R. Glowinski, J. Periaux, and P . Perrier, On the numerical solution of nonlinear problems in fluid dynamics by least squares and finite element methods. CMAME (1979) Arnaud Münch Least-Squares methods to solve direct and control problems

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend