on the stackelberg strategies in control theory
play

On the Stackelberg strategies in control theory Enrique - PowerPoint PPT Presentation

On the Stackelberg strategies in control theory Enrique FERNNDEZ-CARA Dpto. E.D.A.N. - Univ. of Sevilla several joint works with F.D. ARARUNA Dpto. Matemtica - UFPB - Brazil S. GUERRERO Lab. J.-L. Lions - UPMC - France M.C. SANTOS Dpto.


  1. On the Stackelberg strategies in control theory Enrique FERNÁNDEZ-CARA Dpto. E.D.A.N. - Univ. of Sevilla several joint works with F.D. ARARUNA Dpto. Matemática - UFPB - Brazil S. GUERRERO Lab. J.-L. Lions - UPMC - France M.C. SANTOS Dpto. Matemática - UFPE - Brazil Dedicated to Jean-Michel Coron in his 60th birthday E. Fernández-Cara Controllability of PDEs

  2. Outline Background 1 Hierarchical control 2 The system and the controls. Meaning The Stackelberg-Nash strategy The main result. Idea of the proof Additional results and comments 3 E. Fernández-Cara Controllability of PDEs

  3. Control issues The meaning of control CONTROL PROBLEMS What is usual: act to get good (or the best) results for � E ( U ) = F + . . . What is easier? Solving? Controlling? Two classical approaches: Optimal control Controllability E. Fernández-Cara Controllability of PDEs

  4. Background Optimal control OPTIMAL CONTROL A general optimal control problem Minimize J ( v ) Subject to v ∈ V ad , y ∈ Y ad , ( v , y ) satisfies E ( y ) = F ( v ) + . . . ( S ) Main questions: ∃ , uniqueness/multiplicity, characterization, computation, . . . We could also consider similar bi-objective optimal control: "Minimize" J 1 ( v ) , J 2 ( v ) Subject to v ∈ V ad , . . . E. Fernández-Cara Controllability of PDEs

  5. Background Controllability CONTROLLABILITY A null controllability problem Find ( v , y ) Such that v ∈ V ad , ( v , y ) satisfies ( ES ) , y ( T ) = 0 with y : [ 0 , T ] �→ H , E ( y ) ≡ y t + A ( y ) = F ( v ) + . . . ( ES ) Again many interesting questions: ∃ , uniqueness/multiplicity, characterization, computation, . . . A very rich subject for PDEs, see [Russell, J.-L. Lions, Coron, Zuazua, . . . ] E. Fernández-Cara Controllability of PDEs

  6. Background Both viewpoints Question: How can we adopt both viewpoints together? Example: Optimal-control / controllability problem A simplified model for the autonomous car driving problem The system: x ( 0 ) = x 0 x = f ( x , u ) , ˙ Constraints: dist. ( x ( t ) , Z ( t )) ≥ ε ∀ t u ∈ U ad ( | u ( t ) | ≤ C ) u determines direction and speed Goals (prescribed x T and ˆ x ): x ( T ) = x T (or | x ( T ) − x T | ≤ ε . . . ) Minimize sup t | x ( t ) − ˆ x ( t ) | [Sontag, Sussman-Tang, . . . ] E. Fernández-Cara Controllability of PDEs

  7. Optimal control + controllability Automatic driving Figure: The ICARE Project, INRIA, France. Autonomous car driving. Malis-Morin-Rives-Samson, 2004 The car in the street E. Fernández-Cara Controllability of PDEs

  8. Optimal control + controllability Automatic driving Figure: Nissan ID. Autonomous car driving. 2015–2020 What is announced: • Nissan ID 1.0 (2015), highways and traffic jams (no lane change) • ID 2.0 (2018), overtaking and lane change • ID 3.0 (2020), complete autonomous driving in town http://reports.nissan-global.com/EN/?p=17295 E. Fernández-Cara Controllability of PDEs

  9. Hierarchical control The system and the controls. Meaning Another way to connect optimal control and controllability: HIERARCHICAL CONTROL (Stackelberg) The main ideas in the context of Navier-Stokes: Two controls - one leader, one follower y t +( y · ∇ ) y − ∆ y + ∇ p = f 1 O + v 1 ω , ( x , t ) ∈ Ω × ( 0 , T )    ∇ · y = 0 , ( x , t ) ∈ Ω × ( 0 , T )  y = 0 , ( x , t ) ∈ ∂ Ω × ( 0 , T )  y ( x , 0 ) = y 0 ( x ) ,  x ∈ Ω  Different domains O , ω Two objectives: Get y ≈ y d in O d × ( 0 , T ) , with reasonable effort: �� �� | y − y d | 2 + µ | v | 2 Minimize α O d × ( 0 , T ) ω × ( 0 , T ) An optimal control problem Get y ( T ) = 0 - A null controllability problem Before explaining what to do . . . let us complicate the situation! E. Fernández-Cara Controllability of PDEs

  10. Hierarchical control The system and the controls. Meaning BEYOND: A MORE COMPLEX CONTROL PROBLEM, NAVIER-STOKES (Stackelberg-Nash, Stackelberg-Pareto, . . . ) Three controls: one leader, two followers y t +( y · ∇ ) y − ∆ y + ∇ p = f 1 O + v 1 1 O 1 + v 2 1 O 2 , ( x , t ) ∈ Ω × ( 0 , T )   ∇ · y = 0 , ( x , t ) ∈ Ω × ( 0 , T )   y = 0 , ( x , t ) ∈ ∂ Ω × ( 0 , T )  y ( x , 0 ) = y 0 ( x ) ,  x ∈ Ω  Different domains O , O i , ( i = 1 , 2 ) Three objectives: “Simultaneously”, y ≈ y i , d in O i , d × ( 0 , T ) , i = 1 , 2, reasonable effort: �� �� | y − y i , d | 2 + µ | v i | 2 , Minimize α i i = 1 , 2 O i , d × ( 0 , T ) O i × ( 0 , T ) Bi-objective optimal control - The task of the followers In practice, an equilibrium ( v 1 ( f ) , v 2 ( f )) for each f ? Get y ( T ) = 0 Null controllability - The task of the leader Can we find f such that y ( T ) = 0? E. Fernández-Cara Controllability of PDEs

  11. Hierarchical control The system and the controls. Meaning y t +( y · ∇ ) y − ∆ y + ∇ p = f 1 O + v 1 1 O 1 + v 2 1 O 2 , ( x , t ) ∈ Ω × ( 0 , T )   ∇ · y = 0 , ( x , t ) ∈ Ω × ( 0 , T )   y = 0 , ( x , t ) ∈ ∂ Ω × ( 0 , T )  y ( x , 0 ) = y 0 ( x ) ,  x ∈ Ω  Many applications: Heating: Controlling temperatures Heat sources at different locations - Heat PDE (linear, semilinear, etc.) Tumor growth: Controlling tumor cell densities Radiotherapy strategies - Reaction-diffusion PDEs bilinear control Fluid mechanics: Controlling fluid velocity fields Several mechanical actions - Stokes, Navier-Stokes or similar Finances: Controlling the price of an option Agents at different stock prices, etc. - Backwards in time heat-like PDE Degenerate coefficients Contributions: Lions, Díaz-Lions, Glowinski-Periaux-Ramos, Guillén, . . . Optimal control + AC E. Fernández-Cara Controllability of PDEs

  12. Hierarchical control The system and the controls. Meaning TOO DIFFICULT - A SIMPLIFIED PROBLEM Again three controls: one leader, two followers y t − y xx = f 1 O + v 1 1 O 1 + v 2 1 O 2 , ( x , t ) ∈ ( 0 , 1 ) × ( 0 , T )   y ( 0 , t ) = y ( 1 , t ) = 0 , t ∈ ( 0 , T ) ( H ) y ( x , 0 ) = y 0 ( x ) , x ∈ ( 0 , 1 )  Different intervals O , O i Again three objectives: Simultaneously, y ≈ y i , d in O i , d × ( 0 , T ) , i = 1 , 2, reasonable effort: �� �� | y − y i , d | 2 + µ | v i | 2 , Minimize α i i = 1 , 2 O i , d × ( 0 , T ) O i × ( 0 , T ) Bi-objective optimal control - Followers’ task Get y ( T ) = 0 Null controllability - Leader’s task What can we do? E. Fernández-Cara Controllability of PDEs

  13. Hierarchical control The Stackelberg-Nash strategy THE STACKELBERG-NASH STRATEGY Step 1: f is fixed �� �� | y − y i , d | 2 + µ | v i | 2 , i = 1 , 2 J i ( v 1 , v 2 ) := α i O i , d × ( 0 , T ) O i × ( 0 , T ) Find a Nash equilibrium ( v 1 ( f ) , v 2 ( f )) with v i ( f ) ∈ L 2 ( O i × ( 0 , T )) : ∀ v 1 ∈ L 2 ( O 1 × ( 0 , T )) J 1 ( v 1 ( f ) , v 2 ( f )) ≤ J 1 ( v 1 , v 2 ( f )) ∀ v 2 ∈ L 2 ( O 2 × ( 0 , T )) J 2 ( v 1 ( f ) , v 2 ( f )) ≤ J 2 ( v 1 ( f ) , v 2 ) Equivalent to: y t − y xx = f 1 O − 1 µφ 1 1 O 1 − 1  µφ 2 1 O 2       − φ i , t − φ i , xx = α i ( y − y i , d ) 1 O i , i = 1 , 2 ( HN ) φ i ( 0 , t ) = φ i ( 1 , t ) = 0 , y ( 0 , t ) = y ( 1 , t ) = 0 , t ∈ ( 0 , T )     y ( x , 0 ) = y 0 ( x ) , φ i ( x , T ) = 0 , x ∈ ( 0 , 1 )   Then: v i ( f ) = − 1 µ φ i | O i × ( 0 , T ) (Pontryagin) ∃ ( v 1 ( f ) , v 2 ( f )) ? Uniqueness? E. Fernández-Cara Controllability of PDEs

  14. Hierarchical control The Stackelberg-Nash strategy THE STACKELBERG-NASH STRATEGY Step 2: Find f such that y t − y xx = f 1 O − 1 µφ 1 1 O 1 − 1  µφ 2 1 O 2       − φ i , t − φ i , xx = α i ( y − y i , d ) 1 O i , i = 1 , 2 ( HSN ) 1 φ i ( 0 , t ) = φ i ( 1 , t ) = 0 , y ( 0 , t ) = y ( 1 , t ) = 0 , t ∈ ( 0 , T )     y ( x , 0 ) = y 0 ( x ) , φ i ( x , T ) = 0 , x ∈ ( 0 , 1 )   y ( x , T ) = 0 , x ∈ ( 0 , 1 ) ( HSN ) 2 with � f � L 2 ( O× ( 0 , T )) ≤ C � y 0 � L 2 For instance, for y i . d ≡ 0, equivalent to: → R ( M ) , with Ly 0 := y ( · , T ) , Mf := y ( · , T ) . . . R ( L ) ֒ ∀ ψ T ∈ L 2 ( 0 , 1 ) In turn, equivalent to: � L ∗ ψ T � ≤ � M ∗ ψ T � (classical, functional analysis; [Russell, 1973]) E. Fernández-Cara Controllability of PDEs

  15. Hierarchical control The result. Idea of the proof Theorem Assume: O 1 , d = O 2 , d , O i , d ∩ O � = ∅ , large µ ρ 2 | y i , d | 2 dx dt < + ∞ , i = 1 , 2 , then: ρ such that, if � � ∃ ˆ O d × ( 0 , T ) ˆ ∀ y 0 ∈ L 2 (Ω) ∃ null controls f ∈ L 2 ( O × ( 0 , T )) & Nash pairs ( v 1 ( f ) , v 2 ( f )) Idea of the proof: 1 - Large µ ⇒ ∀ f ∈ L 2 ( O × ( 0 , T )) ∃ ! Nash equilibrium ( v 1 ( f ) , v 2 ( f )) y t − y xx = f 1 O − 1 µ φ 1 1 O 1 − 1 µ φ 2 1 O 2     − φ i , t − φ i , xx = α i ( y − y i , d ) 1 O i , i = 1 , 2  φ i ( 0 , t ) = φ i ( 1 , t ) = 0 , y ( 0 , t ) = y ( 1 , t ) = 0 , t ∈ ( 0 , T )    y ( x , 0 ) = y 0 ( x ) , φ i ( x , T ) = 0 , x ∈ ( 0 , 1 )  v i ( f ) = − 1 µφ i | O i × ( 0 , T ) E. Fernández-Cara Controllability of PDEs

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend