on the role of fluctuations in 2 1 flavor qcd
play

On the role of fluctuations in (2+1)-flavor QCD Bernd-Jochen - PowerPoint PPT Presentation

On the role of fluctuations in (2+1)-flavor QCD Bernd-Jochen Schaefer Austria Germany Germany September 21 st , 2017 September 20-22, 2017 Zalakaros Conjectured QC 3 D phase diagram expected experimental CEP: existence/location/number


  1. On the role of fluctuations in (2+1)-flavor QCD Bernd-Jochen Schaefer Austria Germany Germany September 21 st , 2017 September 20-22, 2017 Zalakaros

  2. Conjectured QC 3 D phase diagram expected experimental • CEP: existence/location/number trajectory early universe quark − gluon plasma LHC RHIC • relation between chiral & deconfinement? SPS < ψψ > ∼ 0 chiral ⇔ ! deconfinement CEP? [Braun, Janot, Herbst 12/14] Temperature crossover FAIR/JINR • Quarkyonic phase: coincidence of both transitions AGS quark matter at μ =0 & μ >0? SIS < ψψ > = 0 / • inhomogeneous phases? ➜ more favored? crossover hadronic fluid [Carignano, BJS, Buballa 14] superfluid/superconducting • axial anomaly restoration around chiral transition? phases ? n > 0 n = 0 2SC < ψψ > = 0 / B B CFL [Mitter, BJS 14] vacuum nuclear matter • finite volume effects? ➜ lattice comparison/ neutron star cores µ influence boundary conditions Experiment: • role of fluctuations? so far mostly Mean-Field results ➜ effects of fluctuations important [Rennecke, BJS 16] examples: size of crit reg. around CEP • What are good experimental signatures? ➜ higher moments more sensitive to criticality deviation from HRG model 21.09.2017 | B.-J. Schaefer | Giessen University | 2

  3. Conjectured QC 3 D phase diagram expected experimental trajectory early universe Theory: quark − gluon plasma LHC RHIC but simulations restricted to small μ ➜ Lattice: SPS < ψψ > ∼ 0 Temperature crossover FAIR/JINR ➜ Functional QFT methods: FRG,DSE, nPI AGS quark matter SIS < ψψ > = 0 / ➜ Models: effective theories parameter dependency crossover hadronic fluid superfluid/superconducting phases ? Experiment: (non-equilibrium? ➜ most likely thermal equilibrium ) n > 0 n = 0 2SC < ψψ > = 0 / B B CFL ➜ in a finite box (HBT radii: freeze-out vol. ~ 2000-3000 fm 3 ) vacuum nuclear matter neutron star cores µ √ s (UrQMD ( ): system vol. ~ 50 - 250 fm 3 ) Experiment: Theoretical aim: deeper understanding & more realistic HIC description ➜ existence of critical end point(s)? 21.09.2017 | B.-J. Schaefer | Giessen University | 3

  4. Agenda complementary to • Motivation: QCD phase diagram ➜ long term project • Role of Fluctuations: from mean-field approximations to FRG • Instabilities of quark-meson model truncations 21.09.2017 | B.-J. Schaefer | Giessen University | 4

  5. Chiral transition ������������������������������ → ∞ ���� �� ���������������� Taylor expansion: � µ �������������������� � ��������������� ∞ p ( T, µ ) � n � with = c n ( T ) T 4 T n =0 How can we probe a transition? � µ ∂ n p ( T, µ ) /T 4 � n � c n ( T ) = 1 � � ��������������������� ∂ n p ( X ) � n ! ∂ ( µ/T ) n T ���� X = T, µ, . . . � µ =0 ∂ X n freeze-out close to chiral crossover line � ���������������������� c n ≡ ∂ n p ( T, µ ) ∂ ( µ/T ) n . . . ����������������������������� [HotQCD, QM 2012] 27.05.2015 | B.-J. Schaefer | Giessen University | 5

  6. Functional Renormalization Group = δ 2 Γ k Γ (2) Γ k [ φ ] scale dependent e ff ective action t = ln( k/ Λ ) R k ���������� � k δφδφ FRG (average e ff ective action) Regulator [Wetterich 1993] � ���������� Γ k � Example: Leading order derivative expansion arbitrary potential ⇥� 5 )] q + 1 2( ⌃ µ ⇤ ) 2 + 1 � ⇥ ) 2 + V k ( ⇧ 2 ) d 4 x ¯ q [ i � µ ⌃ µ − g ( ⇤ + i ⌥ Γ k = 2( ⌃ µ ⌥ ⌅⌥ V k = Λ ( ⌅ 2 ) = � 4 ( ⇤ 2 + ⇧ ⇥ 2 − v 2 ) 2 − c ⇤ 21.09.2017 | B.-J. Schaefer | Giessen University | 6

  7. Solution techniques Taylor expansion around some point Discretize potential on 1dim-grid � N max a k, 2 n X n ! ( φ 2 − φ 2 0 ) n V k ( φ ) = n =1 input: initial condition at high UV cutoff (usually a symmetric potential) here: fix parametrization at high scales (UV) such to reproduce vacuum physics (IR) φ k → 0 ≡ f π ∼ 93 MeV 27.05.2015 | B.-J. Schaefer | Giessen University | 7

  8. Example: grid technique phase transition: First order Scale evolution UV of meson potential: V_k [a.u.] 0 10 20 30 40 50 φ [MeV] evolution phase transition: Second Order alternative solution techniques: • polynomial (static and co-moving) • bilocal expansion technique V_k [a.u.] • pseudo-spectral IR 0 10 20 30 40 50 60 70 80 90 φ [MeV] 27.05.2015 | B.-J. Schaefer | Giessen University | 8

  9. FRG and QCD � full dynamical QCD FRG flow: [Pawlowski et al. 2009/12] fluctuations of gluon , ghost , quark and (via hadronization) meson in presence of dynamical quarks : gluon propagator is modified pure Yang Mills flow + matter back-coupling 27.05.2015 | B.-J. Schaefer | Giessen University | 9

  10. FRG: quark-meson truncation first step: flow for quark-meson model truncation: neglect YM contributions and bosonic fluctuations without bosonic fluctuations: MFA 27.05.2015 | B.-J. Schaefer | Giessen University | 10

  11. Phase diagram N f =2 QM m π = 138 MeV chiral limit [BJS, J Wambach 2005] 27.05.2015 | B.-J. Schaefer | Giessen University | 11

  12. FRG and QCD � Polyakov-loop improved quark-meson flow: [Herbst, Pawlowski, BJS 2007 2013] fluctuations of Polyakov-loop , quark and meson → U Pol ( Φ ) Yang-Mills flow is replaced by → U Pol ( Φ ) effective Polyakov-loop potential fitted to lattice Yang-Mills thermodynamics 27.05.2015 | B.-J. Schaefer | Giessen University | 12

  13. FRG: Quark-Meson with Polyakov ( T 0 ( µ ) = const) with back reaction ( T 0 ( µ )) without back reaction 200 200 m π =138 MeV 150 150 T [MeV] T [MeV] m π =138 MeV 100 100 χ crossover χ crossover Φ crossover Φ crossover — Φ crossover — Φ crossover 50 50 χ 1st order χ 1st order σ (T=0)/2 σ (T=0)/2 0 0 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 µ [MeV] µ [MeV] [Herbst, Pawlowski, BJS 2010,2013] 27.05.2015 | B.-J. Schaefer | Giessen University | 13

  14. Critical Endpoint Exact location of CEP not ( yet ) accessible with lattice, FRG & DSE 200 µ B /T = 4 , 5 µ B /T=2 µ B /T=3 150 T [MeV] 100 Lattice: curvature range κ =0.0066-0.0180 DSE: chiral crossover DSE: critical end point 50 DSE: chiral first order DSE: deconfinement crossover 0 0 50 100 150 200 µ q [MeV] [Herbst, Pawlowski, BJS 2011] [Fischer, Luecker, Welzbacher 2014] so far: we can exclude CEP for small densities: μ B / Τ <2 Higher densities: dynamical baryons needed! 21.09.2017 | B.-J. Schaefer | Giessen University | 14

  15. (2+1)-flavor effective action [F. Rennecke, BJS 2017] k . 2 π T c ≈ 1 GeV • effective action for scales below • relevant current quarks: u,d,s m u ≈ m d < m s ⇒ N f = 2 + 1 • dominant 4-quark channel with chiral U(N)xU(N) symmetry � 2 + h� � 2 i � λ S − P q T a q q i γ 5 T a q ¯ ¯ • (Pseudo)scalar meson nonet via bosonization κ − + iK − 0 1 � 0 + i η l + i π 0 � 1 σ l + a 0 0 + i π − a − √ 2 1 κ 0 + iK 0 a + 1 � 0 + i η l − i π 0 � Σ = T a ( σ a + i π a ) = 0 + i π + σ l − a 0 B C √ √ 2 2 @ A κ + + iK + κ 0 + i ¯ K 0 1 ¯ 2 ( σ s + i η s ) √ • (Pseudo)scalar mixing angels mass eigenstates flavor eigenstates 27.05.2015 | B.-J. Schaefer | Giessen University | 15

  16. (2+1)-flavor quark-meson model [F. Rennecke, BJS 2017] • gluons fully integrated out: effective action Z n o + ˜ Z Σ ,k ∂ µ Σ · ∂ µ Σ † � � � � Γ k = ¯ γ µ ∂ µ + γ 0 µ q + ¯ qh k · Σ 5 q + tr U k ( Σ ) q Z q,k x q T = ( l, l, s ) Σ 5 = T a ( σ a + i γ 5 π a ) ˜ • effective potential U k = U k ( ρ 1 , ˜ ρ 2 ) − j l σ l − j s σ s − c k ξ ξ = det( Σ + Σ † ) explicit chiral symmetry breaking: U(3) x U(3) sym. potential anomalous U(1)A breaking finite light & strange current quark masses (two chiral invariants) via ’t Hooft determinant ρ i = tr( Σ · Σ † ) i p 2 + m 2 → Z k p 2 + m 2 • wave function renormalizations • Yukawa couplings   Z l,k 0 0   h l,k h l,k h ls,k Z l,k Z q,k = 0 0   h l,k h l,k h ls,k 0 0 Z s,k h k =     h sl,k h sl,k h s,k Z φ ,k 0 0 Z Σ ,k = 0 Z φ ,k 0   Z φ ,k 0 0 27.05.2015 | B.-J. Schaefer | Giessen University | 16

  17. Chiral Phase Diagram [F. Rennecke, BJS 2017] • different truncations: Z n o + ˜ Z Σ ,k ∂ µ Σ · ∂ µ Σ † � � � � Γ k = ¯ γ µ ∂ µ + γ 0 µ q + ¯ qh k · Σ 5 q + tr U k ( Σ ) q Z q,k x truncation running couplings ( T CEP , µ CEP ) [MeV] ¯ U k , ¯ h l,k , ¯ ˜ LPA 0 +Y h s,k , Z l,k , Z s,k , Z φ ,k (61,235) ‣ ¯ U k , ¯ ˜ h l,k , ¯ LPA+Y (46,255) h s,k ¯ ˜ LPA (44,265) U k 21.09.2017 | B.-J. Schaefer | Giessen University | 17

  18. Chiral Phase Diagram [F. Rennecke, BJS 2017] • Critical Endpoint for different truncations: truncation running couplings ( T CEP , µ CEP ) [MeV] ¯ U k , ¯ h l,k , ¯ ˜ LPA 0 +Y h s,k , Z l,k , Z s,k , Z φ ,k (61,235) ¯ U k , ¯ ˜ h l,k , ¯ LPA+Y (46,255) h s,k ¯ ˜ LPA (44,265) U k 21.09.2017 | B.-J. Schaefer | Giessen University | 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend