on the quantitative hardness of cvp
play

On the Quantitative Hardness of CVP Huck Bennett, Alexander - PowerPoint PPT Presentation

On the Quantitative Hardness of CVP Huck Bennett, Alexander Golovnev, Noah Stephens-Davidowitz NYCAC 2017 Outline Closest Vector Problem Applications Hardness Isolating Parallelepipeds The Closest Vector Problem n is the rank


  1. On the Quantitative Hardness of CVP Huck Bennett, Alexander Golovnev, Noah Stephens-Davidowitz NYCAC 2017

  2. Outline ■ Closest Vector Problem ■ Applications ■ Hardness ■ Isolating Parallelepipeds

  3. The Closest Vector Problem

  4. n is the rank of , d is the (ambient) dimension Lattice ■ A lattice L is the set of all integer combinations of linearly independent basis vectors ⃗ b 1 , . . . ,⃗ b n ∈ R d n { } L = L ( ⃗ b 1 , . . . ,⃗ z i ⃗ ∑ b n ) := b i : z i ∈ Z i = 1

  5. Lattice ■ A lattice L is the set of all integer combinations of linearly independent basis vectors ⃗ b 1 , . . . ,⃗ b n ∈ R d n { } L = L ( ⃗ b 1 , . . . ,⃗ z i ⃗ ∑ b n ) := b i : z i ∈ Z i = 1 ■ n is the rank of L , d is the (ambient) dimension

  6. Lattice. Example b 1 b 2

  7. Lattice. Example b 1 b 1 + b 2 b 2

  8. Lattice. Example 2 b 1 + b 2 b 1 b 1 + b 2 b 2

  9. Lattice. Example 2 b 1 + b 2 b 1 b 1 + b 2 b 2

  10. Lattice. Example 2 b 1 + b 2 b 1 t b 1 + b 2 b 2

  11. Lattice. Example 2 b 1 + b 2 b 1 t b 1 + b 2 b 2

  12. Lattice. Example b 1 b 2

  13. Lattice. Example b 1 t b 2

  14. Lattice. Example b 1 t b 2

  15. Distance is defjned in terms of the p norm; for 1 p : p p p 1 p x p x 1 x 2 x d for p : x 1 i d x i CVP p —Closest Vector Problem in the p norm Closest Vector Problem ■ Given a basis for a L ⊂ R d and a target t ∈ R d , compute the distance from t to L

  16. CVP p —Closest Vector Problem in the p norm Closest Vector Problem ■ Given a basis for a L ⊂ R d and a target t ∈ R d , compute the distance from t to L ■ Distance is defjned in terms of the ℓ p norm; for 1 ≤ p < ∞ : x ∥ p := ( | x 1 | p + | x 2 | p + · · · + | x d | p ) 1 / p ∥ ⃗ for p = ∞ : x ∥ ∞ := max 1 ≤ i ≤ d | x i | ∥ ⃗

  17. Closest Vector Problem ■ Given a basis for a L ⊂ R d and a target t ∈ R d , compute the distance from t to L ■ Distance is defjned in terms of the ℓ p norm; for 1 ≤ p < ∞ : x ∥ p := ( | x 1 | p + | x 2 | p + · · · + | x d | p ) 1 / p ∥ ⃗ for p = ∞ : x ∥ ∞ := max 1 ≤ i ≤ d | x i | ∥ ⃗ ■ CVP p —Closest Vector Problem in the ℓ p norm

  18. Applications

  19. Integer Programming [Len83,Kan87,DPV11] Cryptanalysis [Odl90,JS98,NS01] Applications ■ Factoring polynomials over the rationals [LLL’82]

  20. Cryptanalysis [Odl90,JS98,NS01] Applications ■ Factoring polynomials over the rationals [LLL’82] ■ Integer Programming [Len83,Kan87,DPV11]

  21. Applications ■ Factoring polynomials over the rationals [LLL’82] ■ Integer Programming [Len83,Kan87,DPV11] ■ Cryptanalysis [Odl90,JS98,NS01]

  22. Effjciency, Parallelism, Simplicity Worst-Case Hardness Proofs Powerful Cryptography: FHE, ABE About to be Deployed Lattice-Based Cryptography ■ Conjectured Quantum Security

  23. Worst-Case Hardness Proofs Powerful Cryptography: FHE, ABE About to be Deployed Lattice-Based Cryptography ■ Conjectured Quantum Security ■ Effjciency, Parallelism, Simplicity

  24. Powerful Cryptography: FHE, ABE About to be Deployed Lattice-Based Cryptography ■ Conjectured Quantum Security ■ Effjciency, Parallelism, Simplicity ■ Worst-Case Hardness Proofs

  25. About to be Deployed Lattice-Based Cryptography ■ Conjectured Quantum Security ■ Effjciency, Parallelism, Simplicity ■ Worst-Case Hardness Proofs ■ Powerful Cryptography: FHE, ABE

  26. Lattice-Based Cryptography ■ Conjectured Quantum Security ■ Effjciency, Parallelism, Simplicity ■ Worst-Case Hardness Proofs ■ Powerful Cryptography: FHE, ABE ■ About to be Deployed

  27. Real Life Cryptography

  28. Real Life Cryptography

  29. Real Life Cryptography

  30. Hardness

  31. CVP 2 can be solved in 2 n o n time [ADS15] Cryptographic applications require quantitative hardness of CVP [ADPS16,BCD+16,NIS16]: a 2 n 20 -time algorithm would break these schemes in practice Hardness of CVP ■ CVP p is NP-hard for every 1 ≤ p ≤ ∞ [vEB81]

  32. Cryptographic applications require quantitative hardness of CVP [ADPS16,BCD+16,NIS16]: a 2 n 20 -time algorithm would break these schemes in practice Hardness of CVP ■ CVP p is NP-hard for every 1 ≤ p ≤ ∞ [vEB81] ■ CVP 2 can be solved in 2 n + o ( n ) time [ADS15]

  33. Hardness of CVP ■ CVP p is NP-hard for every 1 ≤ p ≤ ∞ [vEB81] ■ CVP 2 can be solved in 2 n + o ( n ) time [ADS15] ■ Cryptographic applications require quantitative hardness of CVP [ADPS16,BCD+16,NIS16]: a 2 n / 20 -time algorithm would break these schemes in practice

  34. n Boolean vars, m clauses, clause length k SETH [IP99]. There exists a constant k : no algorithm solves k -SAT in 2 0 99 n time Goal: Reduce k -SAT on n vars to CVP on a rank- n lattice k -SAT ■ ( x 1 ∨ ¬ x 2 ∨ . . . ∨ x k ) ∧ . . . ∧ ( x 7 ∨ ¬ x 4 ∨ . . . ∨ x 3 )

  35. SETH [IP99]. There exists a constant k : no algorithm solves k -SAT in 2 0 99 n time Goal: Reduce k -SAT on n vars to CVP on a rank- n lattice k -SAT ■ ( x 1 ∨ ¬ x 2 ∨ . . . ∨ x k ) ∧ . . . ∧ ( x 7 ∨ ¬ x 4 ∨ . . . ∨ x 3 ) ■ n Boolean vars, m clauses, clause length ≤ k

  36. Goal: Reduce k -SAT on n vars to CVP on a rank- n lattice k -SAT ■ ( x 1 ∨ ¬ x 2 ∨ . . . ∨ x k ) ∧ . . . ∧ ( x 7 ∨ ¬ x 4 ∨ . . . ∨ x 3 ) ■ n Boolean vars, m clauses, clause length ≤ k ■ SETH [IP99]. There exists a constant k : no algorithm solves k -SAT in 2 0 . 99 n time

  37. k -SAT ■ ( x 1 ∨ ¬ x 2 ∨ . . . ∨ x k ) ∧ . . . ∧ ( x 7 ∨ ¬ x 4 ∨ . . . ∨ x 3 ) ■ n Boolean vars, m clauses, clause length ≤ k ■ SETH [IP99]. There exists a constant k : no algorithm solves k -SAT in 2 0 . 99 n time ■ Goal: Reduce k -SAT on n vars to CVP on a rank- n lattice

  38. A Very Special Case: 2 -SAT x 1 x 2 x n − 1 x n · · · x 1 2 α 0 0 0 · · · α x 2 0 2 α 0 0 · · · α . . . . ... . . . . . . . 0 0 . x n 0 0 0 2 α · · · α C 1 = ( x 1 ∨ x 2 ) 2 2 0 0 3 · · · C 2 = ( x 1 ∨ x n ) 2 0 0 2 3 · · · . . . . . . ... . . . . . . . . . . . . C m = ( x n − 1 ∨ x n ) 0 0 2 2 3 · · ·

  39. A Very Special Case: 2 -SAT x 1 x 2 x n − 1 x n · · · x 1 2 α 0 0 0 · · · α x 2 0 2 α 0 0 · · · α . . . . ... . . . . . . . 0 0 . x n 0 0 0 2 α · · · α C 1 = ( x 1 ∨ x 2 ) 2 2 0 0 3 · · · C 2 = ( x 1 ∨ x n ) 2 0 0 2 3 · · · . . . . . . ... . . . . . . . . . . . . C m = ( x n − 1 ∨ x n ) 0 0 2 2 3 · · ·

  40. A Very Special Case: 2 -SAT x 1 x 2 x n − 1 x n · · · x 1 2 α 0 0 0 · · · α x 2 0 2 α 0 0 · · · α . . . . ... . . . . . . . 0 0 . x n 0 0 0 2 α · · · α C 1 = ( x 1 ∨ x 2 ) 2 2 0 0 3 · · · C 2 = ( x 1 ∨ x n ) 2 0 0 2 3 · · · . . . . . . ... . . . . . . . . . . . . C m = ( x n − 1 ∨ x n ) 0 0 2 2 3 · · ·

  41. 0 1 n , If x fjrst n lines give p distance n 0 1 n , If x distance is p n 1 A Very Special Case: 2 -SAT. Proof x 1 x 2 x n − 1 x n · · · 2 α 0 0 0 · · · α α is very large 0 2 α 0 0 · · · α . . . ... . . . . . 0 0 . 0 0 0 2 α · · · α 2 2 0 0 3 · · · 2 0 0 2 3 · · · . . . . . ... . . . . . . . . . . 0 0 2 2 3 · · ·

  42. 0 1 n , If x distance is p n 1 A Very Special Case: 2 -SAT. Proof x 1 x 2 x n − 1 x n · · · 2 α 0 0 0 · · · α α is very large 0 2 α 0 0 · · · α If x ∈ { 0 , 1 } n , . . . ... . . . . . 0 0 . fjrst n lines give 0 0 0 2 α · · · α distance n α p 2 2 0 0 3 · · · 2 0 0 2 3 · · · . . . . . ... . . . . . . . . . . 0 0 2 2 3 · · ·

  43. A Very Special Case: 2 -SAT. Proof x 1 x 2 x n − 1 x n · · · 2 α 0 0 0 · · · α α is very large 0 2 α 0 0 · · · α If x ∈ { 0 , 1 } n , . . . ... . . . . . 0 0 . fjrst n lines give 0 0 0 2 α · · · α distance n α p 2 2 0 0 3 · · · If x ̸∈ { 0 , 1 } n , 2 0 0 2 3 · · · distance is . . . . . ... . . . . . . . . . . ≥ ( n + 1 ) α p 0 0 2 2 3 · · ·

  44. sat clause con- tributes 1 to the distance unsat clause contributes 3 p 1 A Very Special Case: 2 -SAT. Proof x 1 x 2 x n − 1 x n · · · x ∈ { 0 , 1 } n 2 α 0 0 0 · · · α 0 2 α 0 0 · · · α . . . ... . . . . . 0 0 . 0 0 0 2 α · · · α 2 2 0 0 3 · · · 2 0 0 2 3 · · · . . . . . ... . . . . . . . . . . 0 0 2 2 3 · · ·

  45. unsat clause contributes 3 p 1 A Very Special Case: 2 -SAT. Proof x 1 x 2 x n − 1 x n · · · x ∈ { 0 , 1 } n 2 α 0 0 0 · · · α 0 2 α 0 0 · · · α sat clause con- . . . ... . . . . . 0 0 . tributes 1 to 0 0 0 2 α · · · α the distance 2 2 0 0 3 · · · 2 0 0 2 3 · · · . . . . . ... . . . . . . . . . . 0 0 2 2 3 · · ·

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend