on the experimental transferability of spectral graph
play

On the Experimental transferability of Spectral Graph Convolutional - PowerPoint PPT Presentation

On the Experimental transferability of Spectral Graph Convolutional Networks Masters project presentation 6/ 7/ 2020 Axel Nilsson Outline 1. Introduction - Spectral graph convolutional networks - ChebNet 2. Benchmarking -


  1. On the Experimental transferability of Spectral Graph Convolutional Networks Master’s project presentation 6/ 7/ 2020 Axel Nilsson

  2. Outline 1. Introduction 
 - Spectral graph convolutional networks 
 - ChebNet 2. Benchmarking 
 - Benchmarking GNNs 
 - OGB 3. Structural edge dropout 4. Questions (20 minutes)

  3. 1. Introduction - Graphs G - Graph N - Set of nodes E - set of edges A - Adjacency matrix Social networks Meshes D - Degree matrix h - Node features e - Edge features g - Graph features Molecules Worldwide Web 3

  4. <latexit sha1_base64="OYsZpP546dVRoZHgMDSVFXo3E=">ACBXicbVDLSgMxFM3UV62vUZe6CBbBVZmpgm6Eoi5cuKjQh9AZSyZzpw3NPEgyQhm6ceOvuHGhiFv/wZ1/YzrtQlsPBE7OuYfkHi/hTCrL+jYKC4tLyvF1dLa+sbmlrm905JxKig0acxjcecRCZxF0FRMcbhLBJDQ49D2Bpdjv/0AQrI4aqhAm5IehELGCVKS1z37kCrg+x069z+4b2LnRYZ/k165ZtipWDjxP7CkpoynqXfPL8WOahApyomUHdtKlJsRoRjlMCo5qYSE0AHpQUfTiIQg3SzfYoQPteLjIBb6RArn6u9ERkIph6GnJ0Oi+nLWG4v/eZ1UBWduxqIkVRDRyUNByrGK8bgS7DMBVPGhJoQKpv+KaZ8IQpUurqRLsGdXnietasU+rlRvT8q1i2kdRbSHDtARstEpqFrVEdNRNEjekav6M14Ml6Md+NjMlowpld9AfG5w8lwJcT</latexit> <latexit sha1_base64="rygHktOznzaPEHpPqJKOHTvAE=">ACh3icbVFNb9NAEF2bAq35CnDksiICBZC3VbQC1L5OHDgECTSVsqm0Xg9jldr63dMSKy/Ff4Udz4N6zTIJGWkVZ6em/ezOxMWmvlKI5/B+GNnZu3bu/uRXfu3rv/YPDw0YmrGitxKitd2bMUHGplcEqKNJ7VFqFMNZ6mFx97/fQ7Wqcq841WNc5LWBqVKwnkqcXgp0hxqUzrfDPqouK8Faj1q6Tjz/k78UMJjTmNxKRQXBRAraACTo+El98kwxe8F7zLqrqjhfnvZsLq5YFeUlE2W2K3xCTb7AtikSaLK/4/DFYBiP43Xw6yDZgCHbxGQx+CWySjYlGpIanJslcU3zFiwpqbGLROwBnkBS5x5aKBEN2/Xe+z4M89kPK+sf4b4mv3X0ULp3KpMfWYJVLirWk/+T5s1lB/NW2XqhtDIy0Z5ozlVvD8Kz5RFSXrlAUir/KxcFmBkj9d5JeQXP3ydXCyP04OxvtfD4fHzbr2GVP2FM2Ygl7y47ZzZhUyaDneBlcBAchnvh6/BNeHSZGgYbz2O2FeH7Pz6nwZ8=</latexit> <latexit sha1_base64="tpbfwoVml3a/G4OEIusF4n9c+jA=">AB+XicbVBNS8NAEN34WetX1KOXxSJ4sSRV0ItQtQePFewHtCFstpt26WYTdieFEvpPvHhQxKv/xJv/xm2bg7Y+GHi8N8PMvCARXIPjfFsrq2vrG5uFreL2zu7evn1w2NRxqihr0FjEqh0QzQSXrAEcBGsnipEoEKwVDO+nfmvElOaxfIJxwryI9CUPOSVgJN+2uzUmgPgpvsE1fI5vfbvklJ0Z8DJxc1JCOeq+/dXtxTSNmAQqiNYd10nAy4gCTgWbFLupZgmhQ9JnHUMliZj2stnlE3xqlB4OY2VKAp6pvycyEmk9jgLTGREY6EVvKv7ndVIr72MyQFJul8UZgKDGexoB7XDEKYmwIoYqbWzEdEUomLCKJgR38eVl0qyU3Yty5fGyVL3L4yigY3SCzpCLrlAVPaA6aiCKRugZvaI3K7NerHfrY96YuUzR+gPrM8f276R2A=</latexit> <latexit sha1_base64="BClwxI3FfOIOcgvRI4ve2qwkvQ=">ACGnicbVDLSsNAFJ3UV62vqEs3g0VwY0mqoBuhahe6q2Af0MQwmU7aoZNJmJkIJeQ73Pgrblwo4k7c+DdO2y09cC9HM65l5l7/JhRqSzr2ygsLC4trxRXS2vrG5tb5vZOS0aJwKSJIxaJjo8kYZSTpqKkU4sCAp9Rtr+8Grstx+IkDTid2oUEzdEfU4DipHSkmfaTp0whTwOz290O4L1+9QJBMKpnaXVLIMXs4pnlq2KNQGcJ3ZOyiBHwzM/nV6Ek5BwhRmSsmtbsXJTJBTFjGQlJ5EkRniI+qSrKUchkW46OS2DB1rpwSASuriCE/X3RopCKUehrydDpAZy1huL/3ndRAVnbkp5nCjC8fShIGFQRXCcE+xRQbBiI0QFlT/FeIB0jEonWZJh2DPnjxPWtWKfVyp3p6Ua5d5HEWwB/bBIbDBKaiBa9ATYDBI3gGr+DNeDJejHfjYzpaMPKdXfAHxtcPVHCf1w=</latexit> Graph Convolutional Networks (GCNs) Convolutional neural networks do not translate well to graphs: • No ordering of nodes • No orientation • Varying neighbourhood sizes Vanilla spectral GCN: h ` +1 = ξ ⇣ θ ( Λ ) Φ > h ` ⌘ Φ ˆ The Laplacian operator: ∆ u = D − A ⇣ θ ( ∆ ) h ` ⌘ ˆ 1 1 = ξ 2 AD ∆ n = I n − D 2 h - node feature ∆ = Φ T ΛΦ xi - Non-linear activation function Spectral decomposition: theta - matrix of learnable weights n eigenvalues λ and eigenvectors Φ phi - eigenvectors of the laplacian 4

  5. <latexit sha1_base64="3CE7J9nOv6NxqLkm/HcR1l1ow=">ACNXicbVC7SgNBFJ2N7/iKWtoMBiE2YTcK2giFhYWCkUsnGZndwkY2YfzNwVwrI/ZeN/WGlhoYitv+DkUWjihRnOnHsOd+7xYyk02varlZuZnZtfWFzKL6+srq0XNjbrOkoUhxqPZKRufaZBihBqKFDCbayABb6EG793NujfPIDSIgqr2I+hGbBOKNqCMzSUV7jseKmLXUCWlVwUsgWpew7SPdo9jVSeCl98d2dpf2MjoSGiKj1cE96fAKRbtsD4tOA2cMimRcV17h2W1FPAkgRC6Z1g3HjrGZMoWCS8jybqIhZrzHOtAwMGQB6GY63Dqju4Zp0XakzAmRDtnfjpQFWvcD3ygDhl092RuQ/UaCbaPmqkI4wQh5KNB7URSjOgQtoSCjKvgGMK2H+SnmXKcbRBJ03ITiTK0+DeqXs7Jcr1wfFk9NxHItkm+yQEnHITkhF+SK1Agnj+SFvJMP68l6sz6tr5E0Z409W+RPWd8/9/Ksvg=</latexit> <latexit sha1_base64="E90jtfDd+M5HCaRdNbC5umZQvuU=">ACMXicbVDLShxBFK32kegkJqNZuikcAtk4dI+BEQdaGQhYGMCtOT5nb1HaewqrpTdVscmv4lN/5JyMZFQsjWn7DmsfCRAwWHc87l1j1poaSjMLwN5uYXFl+8XFpuvHq98uZtc3XtxOWlFdgVucrtWQoOlTYJUkKzwqLoFOFp+nF/tg/vUTrZG6+0ajAvoZzIwdSAHkpaR7GJFWGVXyAiqDmO7zDY+XnM0gqDVf192ozqvnUTgzf5EeNZR9IUVX4Y9tiYnKrky910myF7XAC/pxEM9JiMxwnzZ9xlotSoyGhwLleFBbUr8CSFArRlw6LEBcwDn2PDWg0fWrycU1f+VjA9y658hPlEfTlSgnRvp1Cc10NA9cbi/7xeSYP/UqaoiQ0YrpoUCpOR/XxzNpUZAaeQLCSv9XLoZgQZAvueFLiJ6e/JycdNrRVrvz9WNrd29WxJbZxvsA4vYJ7bLDtkx6zLBrtkv9pv9CW6C2+Bv8G8anQtmM+/YIwR39zsbqQU=</latexit> <latexit sha1_base64="LICBwgaGZRWz2b6/74DFAgP4BTU=">ACanicbVHBbtQwFHTSAmWhdFskUNWLxYLEpaskIMFlpQo4cGylbltpvVo5zkvWquME+6XSKvKhv8iNL+DCR+BNc6BdnmR5NPOex6ntZIWo+hXEG5tP3r8ZOfp4Nnz3Rd7w/2DC1s1RsBUVKoyVym3oKSGKUpUcFUb4GWq4DK9/rWL2/AWFnpc1zVMC95oWUuBUdPLYa3TEGOrGUpFK3Bi+cq1yg/NFG7nJkjK2hrGbMJQqg5Z9A4Xc0U7vVU1ZAT9o4iYJ3WzTx7E7vbEDRjorHdhRhZLHC+Go2gcdU3QdyDEenrdDH8ybJKNCVoFIpbO4ujGuf+UJRCgbdoLNRcXPMCZh5qXoKdt1Ujr7zTEbzyvilkXbsvxMtL61dlanvLDku7UNtTf5PmzWYf563UtcNghZ3RnmjKFZ0nTvNpAGBauUBF0b6u1Kx5IYL9L8z8CHED5+8CS6ScfxhnJx9HJ186ePYIUfkDXlPYvKJnJDv5JRMiSC/g93gVfA6+BMehIfh0V1rGPQzL8m9Ct/+BSwvuX8=</latexit> ChebNet: a fast spectral GCN Re-normalised Laplacian: Chebyschev Polynoms: ˜ ∆ = 2 λ − 1 max ∆ n − I  T 0 = h  T 1 = ˜ ∆ T 0 Re-scales the eigenvalues to [-1,1] T n ≥ 2 = 2 ˜ ∆ T n − 1 − T n − 2  Recursively computes a basis Learned filters: k g θ ( ˜ θ j T j ( ˜ X ∆ ) h = ∆ ) • O(1) parameter per layer • Filters are localised j =0 • No eigendecomposition For the corresponding order k • Filters are basis dependent Michaël De ff errard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. page 9. arXiv:1606.09375 5

  6. A proof of transferability The work of Levie et al. debunked the prejudices of the vanilla spectral GCNs “If two graphs discretise the same continuous metric space, then a spectral GCN has approximately the same repercussion on both graphs.” Spectral GCNs should work well on sets of graphs Levie et al. - 2019 - Transferability of Spectral Graph Convolutional Networks 6

  7. Objective Give experimental proof of transferability of spectral GCNs on datasets with sets of graphs Try to improve the transferability of the spectral GCNs -> Structural Edge Dropout 7

  8. 2. Benchmarking • Several benchmarks aim at comparing GCNs • Provides a series of di ff erent tasks with large datasets • Framework giving training hyper parameters which ensures replicability • None include spectral GCNs! 8

  9. Graph Classification MNIST & CIFAR10 Superpixels Data of the MNIST Superpixel dataset - label: 0 • Task: Graph classification on images to superpixel graphs with the SLIC transform. • Results: Average performance on MNIST and CIFAR10 compared to similar models 9

  10. Graph regression - ZINC • Task: Graph regression, prediction of the solubility of each molecule • Result: Best performance between models learning isotropic filters. Good performance overall. • Questionable whether the train/val/test set are representative of any underlying space Data of the ZINC, node colours are • Unlikely that each molecule is a sample of a related to atom type - label: -0.2070 continuous space 10

  11. Node classification - SBM • Task: Predict the node label between six communities of various sizes with a probability p of being connected to other nodes of the community and q to others • Result: Very good performance • All graphs describe a non-euclidian continuous underlying manifold Data of the SBM Cluster dataset. The colour of the nodes represent their labels. 11

  12. OGB: Result Summary • Task: Graph regression, prediction of the proprieties of each molecule • Result: Above average performance overall. Good performances with regard to classical models GCN and GIN on both tasks • Splitting in Test/train/val is more equitable than ZINC • Relatively better performance for the larger dataset • New models have been added to the leaderboard since the report that show greater performance link : https://ogb.stanford.edu/docs/leader_graphprop/ 12

  13. 3. Structural Edge Dropout MNIST image on a 4 - NN Lattice MNIST image on a 4 - NN with structural edge dropout Structural augmentation are particular to graphs Cut a random set of edges at a variable rate between 0 and r % of all the edges for every graph during the training 13

  14. Structural edge dropout 100 80 %�acc��ac� 60 40 20 0 20 40 60 80 100 %��f��e���ed�edge� �M�de�� C�ebNe���ea��ed������ed�4�NN��a���ce C�ebNe���ea��ed�����a�d�������b-�a���ed�ed�e���f�4NN��a���ce���a�� • The node features are not changed, only the graph is • Shows improvement on transferability outside the region of training 14

  15. Structural edge dropout - on the benchmarking tasks • The performance of the ChebNet is improved in every case. • Most significantly in the case of the CIFAR dataset • Does not work for ZINC -> limitation of the technique 15

  16. Conclusion • The ChebNet provide state of the art performance on ZINC and CLUSTER of the ‘benchmarking-GNNs’ and good performances for two of OGB’s datasets • Supports experimentally the argument that spectral GCNs have good performance and transferability • Structural edge dropout can not only increase the performance of a spectral GCN but also its transferability 16

  17. 4. Questions &

  18. Benchmarking-GNNs: Result Summary 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend