on the curious commutativity of ampd matrices
play

On the curious commutativity of AMPD matrices Adhemar Bultheel - PowerPoint PPT Presentation

On the curious commutativity of AMPD matrices Adhemar Bultheel Dept. Computer Science, KU Leuven Leipzig, 15 February 2018 http://nalag.cs.kuleuven.be/papers/ade/LEIPZIG18 Adhemar Bultheel (KU leuven) Curious commutativity Leipzig, 15


  1. On the curious commutativity of AMPD matrices Adhemar Bultheel Dept. Computer Science, KU Leuven Leipzig, 15 February 2018 http://nalag.cs.kuleuven.be/papers/ade/LEIPZIG18 Adhemar Bultheel (KU leuven) Curious commutativity Leipzig, 15 February 2018 1 / 28

  2. Definition AMPD = AM + D A , D ∈ C n × n diagonal matrices → � M = M π = G k = G π 1 G π 2 · · · G π n , k ∈ π π = ( π 1 , π 2 , . . . , π n ) a permutation of (1 , 2 , . . . , n )   I k − 1   α k β k   G k =  , k = 1 , . . . , n − 1  γ k δ k I n − k − 1 � I n − 1 � G n = . α n Note that G i and G j if | i − j | ≥ 2. But G k G k +1 � = G k +1 G k in general. Adhemar Bultheel (KU leuven) Curious commutativity Leipzig, 15 February 2018 2 / 28

  3. Definition AMPD = AM + D A , D ∈ C n × n diagonal matrices → � M = M π = G k = G π 1 G π 2 · · · G π n , k ∈ π π = ( π 1 , π 2 , . . . , π n ) a permutation of (1 , 2 , . . . , n )   I k − 1   α k β k   G k =  , k = 1 , . . . , n − 1  γ k δ k I n − k − 1 � I n − 1 � G n = . α n Note that G i and G j if | i − j | ≥ 2. But G k G k +1 � = G k +1 G k in general. Adhemar Bultheel (KU leuven) Curious commutativity Leipzig, 15 February 2018 2 / 28

  4. Definition AMPD = AM + D A , D ∈ C n × n diagonal matrices → � M = M π = G k = G π 1 G π 2 · · · G π n , k ∈ π π = ( π 1 , π 2 , . . . , π n ) a permutation of (1 , 2 , . . . , n )   I k − 1   α k β k   G k =  , k = 1 , . . . , n − 1  γ k δ k I n − k − 1 � I n − 1 � G n = . α n Note that G i and G j if | i − j | ≥ 2. But G k G k +1 � = G k +1 G k in general. Adhemar Bultheel (KU leuven) Curious commutativity Leipzig, 15 February 2018 2 / 28

  5. Definition AMPD = AM + D A , D ∈ C n × n diagonal matrices → � M = M π = G k = G π 1 G π 2 · · · G π n , k ∈ π π = ( π 1 , π 2 , . . . , π n ) a permutation of (1 , 2 , . . . , n )   I k − 1   α k β k   G k =  , k = 1 , . . . , n − 1  γ k δ k I n − k − 1 � I n − 1 � G n = . α n Note that G i and G j if | i − j | ≥ 2. But G k G k +1 � = G k +1 G k in general. Adhemar Bultheel (KU leuven) Curious commutativity Leipzig, 15 February 2018 2 / 28

  6. Definition AMPD = AM + D A , D ∈ C n × n diagonal matrices → � M = M π = G k = G π 1 G π 2 · · · G π n , k ∈ π π = ( π 1 , π 2 , . . . , π n ) a permutation of (1 , 2 , . . . , n )   I k − 1   α k β k   G k =  , k = 1 , . . . , n − 1  γ k δ k I n − k − 1 � I n − 1 � G n = . α n Note that G i and G j if | i − j | ≥ 2. But G k G k +1 � = G k +1 G k in general. Adhemar Bultheel (KU leuven) Curious commutativity Leipzig, 15 February 2018 2 / 28

  7. Table of contents Definition AMPD and observation The proof Unitary case The origin OPUC Generalization (ORFUC) Rational AMPD = RAMPD Adhemar Bultheel (KU leuven) Curious commutativity Leipzig, 15 February 2018 3 / 28

  8. Example Example 2     0 1 0 0 α 1 β 1   , G 2 =   , G 1 = γ 1 δ 1 0 0 α 2 β 2 0 0 1 0 γ 2 δ 2     α 1 β 1 α 2 β 1 β 2 α 1 β 1 0   � = G 2 G 1 =   G 1 G 2 = γ 1 δ 1 α 2 δ 1 β 2 α 2 γ 1 α 2 δ 1 β 2 0 γ 2 δ 2 γ 2 γ 1 γ 2 δ 1 δ 2 BUT det( G 1 G 2 ) = det( G 2 G 1 ) Thus also det( AG 1 G 2 + D ) = det( AG 2 G 1 + D ) D → D − λ I ⇒ σ ( AG 1 G 1 + D ) = σ ( AG 2 G 1 + D ) Adhemar Bultheel (KU leuven) Curious commutativity Leipzig, 15 February 2018 4 / 28

  9. Example Example 2     0 1 0 0 α 1 β 1   , G 2 =   , G 1 = γ 1 δ 1 0 0 α 2 β 2 0 0 1 0 γ 2 δ 2     α 1 β 1 α 2 β 1 β 2 α 1 β 1 0   � = G 2 G 1 =   G 1 G 2 = γ 1 δ 1 α 2 δ 1 β 2 α 2 γ 1 α 2 δ 1 β 2 0 γ 2 δ 2 γ 2 γ 1 γ 2 δ 1 δ 2 BUT det( G 1 G 2 ) = det( G 2 G 1 ) Thus also det( AG 1 G 2 + D ) = det( AG 2 G 1 + D ) D → D − λ I ⇒ σ ( AG 1 G 1 + D ) = σ ( AG 2 G 1 + D ) Adhemar Bultheel (KU leuven) Curious commutativity Leipzig, 15 February 2018 4 / 28

  10. Example Example 2     0 1 0 0 α 1 β 1   , G 2 =   , G 1 = γ 1 δ 1 0 0 α 2 β 2 0 0 1 0 γ 2 δ 2     α 1 β 1 α 2 β 1 β 2 α 1 β 1 0   � = G 2 G 1 =   G 1 G 2 = γ 1 δ 1 α 2 δ 1 β 2 α 2 γ 1 α 2 δ 1 β 2 0 γ 2 δ 2 γ 2 γ 1 γ 2 δ 1 δ 2 BUT det( G 1 G 2 ) = det( G 2 G 1 ) Thus also det( AG 1 G 2 + D ) = det( AG 2 G 1 + D ) D → D − λ I ⇒ σ ( AG 1 G 1 + D ) = σ ( AG 2 G 1 + D ) Adhemar Bultheel (KU leuven) Curious commutativity Leipzig, 15 February 2018 4 / 28

  11. Example Example 2     0 1 0 0 α 1 β 1   , G 2 =   , G 1 = γ 1 δ 1 0 0 α 2 β 2 0 0 1 0 γ 2 δ 2     α 1 β 1 α 2 β 1 β 2 α 1 β 1 0   � = G 2 G 1 =   G 1 G 2 = γ 1 δ 1 α 2 δ 1 β 2 α 2 γ 1 α 2 δ 1 β 2 0 γ 2 δ 2 γ 2 γ 1 γ 2 δ 1 δ 2 BUT det( G 1 G 2 ) = det( G 2 G 1 ) Thus also det( AG 1 G 2 + D ) = det( AG 2 G 1 + D ) D → D − λ I ⇒ σ ( AG 1 G 1 + D ) = σ ( AG 2 G 1 + D ) Adhemar Bultheel (KU leuven) Curious commutativity Leipzig, 15 February 2018 4 / 28

  12. Example Example 2     0 1 0 0 α 1 β 1   , G 2 =   , G 1 = γ 1 δ 1 0 0 α 2 β 2 0 0 1 0 γ 2 δ 2     α 1 β 1 α 2 β 1 β 2 α 1 β 1 0   � = G 2 G 1 =   G 1 G 2 = γ 1 δ 1 α 2 δ 1 β 2 α 2 γ 1 α 2 δ 1 β 2 0 γ 2 δ 2 γ 2 γ 1 γ 2 δ 1 δ 2 BUT det( G 1 G 2 ) = det( G 2 G 1 ) Thus also det( AG 1 G 2 + D ) = det( AG 2 G 1 + D ) D → D − λ I ⇒ σ ( AG 1 G 1 + D ) = σ ( AG 2 G 1 + D ) Adhemar Bultheel (KU leuven) Curious commutativity Leipzig, 15 February 2018 4 / 28

  13. Question Question Is in general σ ( AM π + D ) independent of π ? Let’s do some experiments ... and the result is.... Now prove it!!! Adhemar Bultheel (KU leuven) Curious commutativity Leipzig, 15 February 2018 5 / 28

  14. Question Question Is in general σ ( AM π + D ) independent of π ? Let’s do some experiments ... and the result is.... Now prove it!!! Adhemar Bultheel (KU leuven) Curious commutativity Leipzig, 15 February 2018 5 / 28

  15. Question Question Is in general σ ( AM π + D ) independent of π ? Let’s do some experiments ... and the result is.... Now prove it!!! Adhemar Bultheel (KU leuven) Curious commutativity Leipzig, 15 February 2018 5 / 28

  16. Question Question Is in general σ ( AM π + D ) independent of π ? Let’s do some experiments ... and the result is.... Now prove it!!! Adhemar Bultheel (KU leuven) Curious commutativity Leipzig, 15 February 2018 5 / 28

  17. Question Question Is in general σ ( AM π + D ) independent of π ? Let’s do some experiments ... and the result is.... Now prove it!!! Adhemar Bultheel (KU leuven) Curious commutativity Leipzig, 15 February 2018 5 / 28

  18. What does M π look like? The matrix M is the product of a number of G -matrices � � � � � � � � � � � � � � � � � � M 1 = or M 2 = or M 3 = � � � � � � � � � � � � � � � � � � M 1 = upper Hessenberg matrix π = (1 , 2 , 3 , 4 , 5 , 6) M 1 : π = (2 , 1 , 3 , 4 , 6 , 5) or (2 , 3 , 1 , 6 , 4 , 5) or ... M 3 = CMV matrix π = (1 , 3 , 5 , 2 , 4 , 6) or (5 , 1 , 3 , 4 , 2 , 6), or ... Adhemar Bultheel (KU leuven) Curious commutativity Leipzig, 15 February 2018 6 / 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend