on the computational complexity of periodic scheduling
play

On the Computational Complexity of Periodic Scheduling PhD defense - PowerPoint PPT Presentation

On the Computational Complexity of Periodic Scheduling PhD defense Thomas Rothvo Real-time Scheduling Given: (synchronous) tasks 1 , . . . , n with i = ( c ( i ) , d ( i ) , p ( i )) Real-time Scheduling Given: (synchronous)


  1. On the Computational Complexity of Periodic Scheduling PhD defense Thomas Rothvoß

  2. Real-time Scheduling Given: (synchronous) tasks τ 1 , . . . , τ n with τ i = ( c ( τ i ) , d ( τ i ) , p ( τ i ))

  3. Real-time Scheduling Given: (synchronous) tasks τ 1 , . . . , τ n with τ i = ( c ( τ i ) , d ( τ i ) , p ( τ i )) running time

  4. Real-time Scheduling Given: (synchronous) tasks τ 1 , . . . , τ n with τ i = ( c ( τ i ) , d ( τ i ) , p ( τ i )) running time (relative) deadline

  5. Real-time Scheduling Given: (synchronous) tasks τ 1 , . . . , τ n with τ i = ( c ( τ i ) , d ( τ i ) , p ( τ i )) running time period (relative) deadline

  6. Real-time Scheduling Given: (synchronous) tasks τ 1 , . . . , τ n with τ i = ( c ( τ i ) , d ( τ i ) , p ( τ i )) running time period (relative) deadline W.l.o.g.: Task τ i releases job of length c ( τ i ) at z · p ( τ i ) and absolute deadline z · p ( τ i ) + d ( τ i ) ( z ∈ N 0 )

  7. Real-time Scheduling Given: (synchronous) tasks τ 1 , . . . , τ n with τ i = ( c ( τ i ) , d ( τ i ) , p ( τ i )) running time period (relative) deadline W.l.o.g.: Task τ i releases job of length c ( τ i ) at z · p ( τ i ) and absolute deadline z · p ( τ i ) + d ( τ i ) ( z ∈ N 0 ) u ( τ i ) = c ( τ i ) Utilization: p ( τ i )

  8. Real-time Scheduling Given: (synchronous) tasks τ 1 , . . . , τ n with τ i = ( c ( τ i ) , d ( τ i ) , p ( τ i )) running time period (relative) deadline W.l.o.g.: Task τ i releases job of length c ( τ i ) at z · p ( τ i ) and absolute deadline z · p ( τ i ) + d ( τ i ) ( z ∈ N 0 ) u ( τ i ) = c ( τ i ) Utilization: p ( τ i ) Settings: ◮ static priorities ↔ dynamic priorities

  9. Real-time Scheduling Given: (synchronous) tasks τ 1 , . . . , τ n with τ i = ( c ( τ i ) , d ( τ i ) , p ( τ i )) running time period (relative) deadline W.l.o.g.: Task τ i releases job of length c ( τ i ) at z · p ( τ i ) and absolute deadline z · p ( τ i ) + d ( τ i ) ( z ∈ N 0 ) u ( τ i ) = c ( τ i ) Utilization: p ( τ i ) Settings: ◮ static priorities ↔ dynamic priorities ◮ single-processor ↔ multi-processor

  10. Real-time Scheduling Given: (synchronous) tasks τ 1 , . . . , τ n with τ i = ( c ( τ i ) , d ( τ i ) , p ( τ i )) running time period (relative) deadline W.l.o.g.: Task τ i releases job of length c ( τ i ) at z · p ( τ i ) and absolute deadline z · p ( τ i ) + d ( τ i ) ( z ∈ N 0 ) u ( τ i ) = c ( τ i ) Utilization: p ( τ i ) Settings: ◮ static priorities ↔ dynamic priorities ◮ single-processor ↔ multi-processor ◮ preemptive scheduling ↔ non-preemptive

  11. Real-time Scheduling Given: (synchronous) tasks τ 1 , . . . , τ n with τ i = ( c ( τ i ) , d ( τ i ) , p ( τ i )) running time period (relative) deadline W.l.o.g.: Task τ i releases job of length c ( τ i ) at z · p ( τ i ) and absolute deadline z · p ( τ i ) + d ( τ i ) ( z ∈ N 0 ) u ( τ i ) = c ( τ i ) Utilization: p ( τ i ) Settings: ◮ static priorities ↔ dynamic priorities ◮ single-processor ↔ multi-processor ◮ preemptive scheduling ↔ non-preemptive Implicit deadlines: d ( τ i ) = p ( τ i ) Constrained deadlines: d ( τ i ) ≤ p ( τ i )

  12. b b b Example: Implicit deadlines & static priorities c ( τ 1 ) = 1 d ( τ 1 ) = p ( τ 1 ) = 2 time 0 1 2 3 4 5 6 7 8 9 10 c ( τ 2 ) = 2 d ( τ 2 ) = p ( τ 2 ) = 5

  13. b b b Example: Implicit deadlines & static priorities Theorem (Liu & Layland ’73) 1 Optimal priorities: p ( τ i ) for τ i ( Rate-monotonic schedule) c ( τ 1 ) = 1 d ( τ 1 ) = p ( τ 1 ) = 2 time 0 1 2 3 4 5 6 7 8 9 10 c ( τ 2 ) = 2 d ( τ 2 ) = p ( τ 2 ) = 5

  14. b b b Example: Implicit deadlines & static priorities Theorem (Liu & Layland ’73) 1 Optimal priorities: p ( τ i ) for τ i ( Rate-monotonic schedule) c ( τ 1 ) = 1 d ( τ 1 ) = p ( τ 1 ) = 2 time 0 1 2 3 4 5 6 7 8 9 10 c ( τ 2 ) = 2 d ( τ 2 ) = p ( τ 2 ) = 5

  15. b b b Example: Implicit deadlines & static priorities Theorem (Liu & Layland ’73) 1 Optimal priorities: p ( τ i ) for τ i ( Rate-monotonic schedule) c ( τ 1 ) = 1 d ( τ 1 ) = p ( τ 1 ) = 2 time 0 1 2 3 4 5 6 7 8 9 10 c ( τ 2 ) = 2 d ( τ 2 ) = p ( τ 2 ) = 5

  16. Feasibility test for implicit-deadline tasks Theorem (Lehoczky et al. ’89) If p ( τ 1 ) ≤ . . . ≤ p ( τ n ) then the response time r ( τ i ) in a Rate-monotonic schedule is the smallest non-negative value s.t. � r ( τ i ) � � c ( τ i ) + c ( τ j ) ≤ r ( τ i ) p ( τ j ) j<i 1 machine suffices ⇔ ∀ i : r ( τ i ) ≤ p ( τ i ) .

  17. Simultaneous Diophantine Approximation (SDA) Given: ◮ α 1 , . . . , α n ∈ Q ◮ bound N ∈ N ◮ error bound ε > 0 Decide: � � � α i − Z � ≤ ε � � ∃ Q ∈ { 1 , . . . , N } : max � � Q Q i =1 ,...,n

  18. Simultaneous Diophantine Approximation (SDA) Given: ◮ α 1 , . . . , α n ∈ Q ◮ bound N ∈ N ◮ error bound ε > 0 Decide: � � � α i − Z � ≤ ε � � ∃ Q ∈ { 1 , . . . , N } : max � � Q Q i =1 ,...,n ⇔ ∃ Q ∈ { 1 , . . . , N } : max i =1 ,...,n |⌈ Qα i ⌋ − Qα i | ≤ ε

  19. Simultaneous Diophantine Approximation (SDA) Given: ◮ α 1 , . . . , α n ∈ Q ◮ bound N ∈ N ◮ error bound ε > 0 Decide: � � � α i − Z � ≤ ε � � ∃ Q ∈ { 1 , . . . , N } : max � � Q Q i =1 ,...,n ⇔ ∃ Q ∈ { 1 , . . . , N } : max i =1 ,...,n |⌈ Qα i ⌋ − Qα i | ≤ ε ◮ NP -hard [Lagarias ’85]

  20. Simultaneous Diophantine Approximation (SDA) Given: ◮ α 1 , . . . , α n ∈ Q ◮ bound N ∈ N ◮ error bound ε > 0 Decide: � � � α i − Z � ≤ ε � � ∃ Q ∈ { 1 , . . . , N } : max � � Q Q i =1 ,...,n ⇔ ∃ Q ∈ { 1 , . . . , N } : max i =1 ,...,n |⌈ Qα i ⌋ − Qα i | ≤ ε ◮ NP -hard [Lagarias ’85] ◮ Gap version NP -hard [R¨ ossner & Seifert ’96, Chen & Meng ’07]

  21. Simultaneous Diophantine Approximation (2) Theorem (R¨ ossner & Seifert ’96, Chen & Meng ’07) Given α 1 , . . . , α n , N , ε > 0 it is NP -hard to distinguish ◮ ∃ Q ∈ { 1 , . . . , N } : max i =1 ,...,n |⌈ Qα i ⌋ − Qα i | ≤ ε O (1) O (1) ◮ ∄ Q ∈ { 1 , . . . , n log log n N } : max log log n ε i =1 ,...,n |⌈ Qα i ⌋ − Qα i | ≤ n

  22. Simultaneous Diophantine Approximation (2) Theorem (R¨ ossner & Seifert ’96, Chen & Meng ’07) Given α 1 , . . . , α n , N , ε > 0 it is NP -hard to distinguish ◮ ∃ Q ∈ { 1 , . . . , N } : max i =1 ,...,n |⌈ Qα i ⌋ − Qα i | ≤ ε O (1) O (1) ◮ ∄ Q ∈ { 1 , . . . , n log log n N } : max log log n ε i =1 ,...,n |⌈ Qα i ⌋ − Qα i | ≤ n Theorem (Eisenbrand & R. - APPROX’09) Given α 1 , . . . , α n , N , ε > 0 it is NP -hard to distinguish ◮ ∃ Q ∈ { N/ 2 , . . . , N } : max i =1 ,...,n |⌈ Qα i ⌋ − Qα i | ≤ ε ◮ ∄ Q ∈ { 1 , . . . , 2 n O (1) · N } : max O (1) log log n · ε i =1 ,...,n |⌈ Qα i ⌋ − Qα i | ≤ n 2 ) n O (1) . even if ε ≤ ( 1

  23. Directed Diophantine Approximation (DDA) Theorem (Eisenbrand & R. - APPROX’09) Given α 1 , . . . , α n , N , ε > 0 it is NP -hard to distinguish ◮ ∃ Q ∈ { N/ 2 , . . . , N } : max i =1 ,...,n |⌈ Qα i ⌉ − Qα i | ≤ ε i =1 ,...,n |⌈ Qα i ⌉ − Qα i | ≤ 2 n O (1) · ε O (1) ◮ ∄ Q ∈ { 1 , . . . , n log log n · N } : max 2 ) n O (1) . even if ε ≤ ( 1

  24. Directed Diophantine Approximation (DDA) Theorem (Eisenbrand & R. - APPROX’09) Given α 1 , . . . , α n , N , ε > 0 it is NP -hard to distinguish ◮ ∃ Q ∈ { N/ 2 , . . . , N } : max i =1 ,...,n |⌈ Qα i ⌉ − Qα i | ≤ ε i =1 ,...,n |⌈ Qα i ⌉ − Qα i | ≤ 2 n O (1) · ε O (1) ◮ ∄ Q ∈ { 1 , . . . , n log log n · N } : max 2 ) n O (1) . even if ε ≤ ( 1 Theorem (Eisenbrand & R. - SODA’10) Given α 1 , . . . , α n , w 1 , . . . , w n ≥ 0 , N , ε > 0 it is NP -hard to distinguish ◮ ∃ Q ∈ [ N/ 2 , N ] : � n i =1 w i ( Qα i − ⌊ Qα i ⌋ ) ≤ ε i =1 w i ( Qα i − ⌊ Qα i ⌋ ) ≤ 2 n O (1) · ε O (1) log log n · N ] : � n ◮ ∄ Q ∈ [1 , n 2 ) n O (1) . even if ε ≤ ( 1

  25. Hardness of Response Time Computation Theorem (Eisenbrand & R. - RTSS’08) Computing response times for implicit-deadline tasks w.r.t. to a Rate-monotonic schedule, i.e. solving � � n − 1 � � r � min r ≥ 0 | c ( τ n ) + c ( τ i ) ≤ r p ( τ i ) i =1 ( p ( τ 1 ) ≤ . . . ≤ p ( τ n ) ) is NP -hard (even to approximate within a O (1) log log n ). factor of n ◮ Reduction from Directed Diophantine Approximation

  26. Mixing Set min c s s + c T y s + a i y i ≥ b i ∀ i = 1 , . . . , n R ≥ 0 s ∈ Z n y ∈

  27. Mixing Set min c s s + c T y s + a i y i ≥ b i ∀ i = 1 , . . . , n R ≥ 0 s ∈ Z n y ∈ ◮ Complexity status? [Conforti, Di Summa & Wolsey ’08]

  28. Mixing Set min c s s + c T y s + a i y i ≥ b i ∀ i = 1 , . . . , n R ≥ 0 s ∈ Z n y ∈ ◮ Complexity status? [Conforti, Di Summa & Wolsey ’08] Theorem (Eisenbrand & R. - APPROX’09) Solving Mixing Set is NP -hard. 1. Model Directed Diophantine Approximation (almost) as Mixing Set 2. Simulate missing constraint with Lagrangian relaxation

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend