on the commutative equivalence of bounded context free
play

On the commutative equivalence of bounded context-free and regular - PowerPoint PPT Presentation

On the commutative equivalence of bounded context-free and regular languages F. DAlessandro 1 B. Intrigila 2 1 Dipartimento di Matematica G. Castelnuovo Universit` a di Roma La Sapienza 2 Dipartimento di Matematica Universit` a


  1. On the commutative equivalence of bounded context-free and regular languages F. D’Alessandro 1 B. Intrigila 2 1 Dipartimento di Matematica “G. Castelnuovo” Universit` a di Roma “La Sapienza” 2 Dipartimento di Matematica Universit` a di Roma “Tor Vergata” F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 1/30

  2. Main result Every bounded context-free language L 1 is commutatively equivalent to a regular language L 2 F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 2/30

  3. Main result Every bounded context-free language L 1 is commutatively equivalent to a regular language L 2 There exists a bijection f : L 1 − → L 2 such that, for every u ∈ L 1 , u and f ( u ) have the same Parikh vector F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 2/30

  4. Overview of the presentation ◮ Bounded and sparse context-free languages ◮ The problem ◮ Outline of the solution F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 3/30

  5. Bounded languages Definition Let L ⊆ A ∗ . L is called n -bounded if there exist n words u 1 , u 2 , . . . , u n such that L ⊆ u ∗ 1 u ∗ 2 · · · u ∗ n . L is called bounded if it is n -bounded for some n F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 4/30

  6. Sparse languages L ⊆ A ∗ The counting function of L is the map c L : N − → N such that c L ( n ) = Card( L ∩ A n ) F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 5/30

  7. Sparse and bounded languages Definition L is sparse or poly-slender if c L ( n ) is upper bounded by a polynomial F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 6/30

  8. Sparse and bounded languages Definition L is sparse or poly-slender if c L ( n ) is upper bounded by a polynomial Theorem (Latteux and Thierrin 1984; Ibarra and Ravikumar, 1986; Raz 1997; Ilie, Rozenberg and Salomaa 2000) A context-free language is sparse if and only if it is bounded F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 6/30

  9. Sparse and bounded languages Theorem (D’Alessandro, Intrigila, and Varricchio, 2006) Let L be a bounded context-free language over the alphabet A Then there exists a regular language L ′ over an alphabet B such that, for all n ≥ 0 , c L ( n ) = c L ′ ( n ) F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 7/30

  10. The problem ◮ Commutative Equivalence of languages ◮ Our problem ◮ Some classical theorems on bounded context-free languages F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 8/30

  11. The Parikh morphism ◮ A = { a 1 , . . . , a t } ◮ ψ : A ∗ − → N t ◮ ∀ u ∈ A ∗ , ψ ( u ) = ( | u | a 1 , | u | a 2 , . . . , | u | a t ) F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 9/30

  12. Commutative Equivalence Let L 1 , L 2 ⊆ A ∗ L 1 is commutatively equivalent to L 2 if there exists a bijection f : L 1 − → L 2 such that, for every u ∈ L 1 , ψ ( u ) = ψ ( f ( u )) F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 10/30

  13. Main result Theorem (D.I. 2011) Let L 1 ⊆ u ∗ 1 · · · u ∗ k be bounded context-free language. Then L 1 is commutatively equivalent to a regular language L 2 F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 11/30

  14. Main result Theorem (D.I. 2011) Let L 1 ⊆ u ∗ 1 · · · u ∗ k be bounded context-free language. Then L 1 is commutatively equivalent to a regular language L 2 Obstruction: ◮ inherently ambiguity of bounded context-free languages ◮ ambiguity of the product u ∗ 1 · · · u ∗ k in the free monoid A ∗ F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 11/30

  15. Some classical theorems on bounded context-free languages F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 12/30

  16. Parikh Theorem ◮ Definition Given languages L 1 , L 2 ⊆ A ∗ , L 1 is letter-equivalent (or Parikh equivalent) to L 2 if ψ ( L 1 ) = ψ ( L 2 ) . ◮ Theorem (Parikh, 1966) Given a context-free language L 1 , there exists a regular language L 2 which is letter-equivalent to L 1 F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 13/30

  17. Parikh Theorem ◮ L 1 = ( ab ) ∗ ∪ ( ba ) ∗ , L 2 = ( ab ) ∗ ◮ ψ ( L 1 ) = ψ ( L 2 ) = { ( n, n ) : n ∈ N } ◮ L 1 cannot be commutatively equivalent to L 2 F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 14/30

  18. Ginsburg Theorems Given words u 1 , . . . , u k ∈ A + , we define the function: φ : N k − → u ∗ 1 u ∗ 2 · · · u ∗ k , such that, for every ( n 1 , . . . , n k ) ∈ N k , φ ( n 1 , . . . , n k ) = u n 1 1 u n 2 2 · · · u n k k F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 15/30

  19. Ginsburg Theorems φ : N k − → u ∗ 1 u ∗ 2 · · · u ∗ k , φ ( n 1 , . . . , n k ) = u n 1 1 u n 2 2 · · · u n k k Theorem (Ginsburg 1966) L ⊆ u ∗ 1 u ∗ 2 · · · u ∗ k L is context-free iff φ − 1 ( L ) is a finite union of linear sets, each having a stratified sets of periods F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 16/30

  20. Ginsburg Theorems Theorem (Ginsburg, 1966) L ⊆ u ∗ 1 u ∗ 2 · · · u ∗ context-free k L is unambiguous iff φ − 1 ( L ) is a finite union of disjoint linear sets, each with stratified and linearly independent periods L = { a i b j c k | i, j, k ∈ N , i = j or j = k } is ambiguous F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 17/30

  21. Outline of the solution F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 18/30

  22. Inherent ambiguity of L 1. Faithful representation of L by a semilinear set 2. “Geometrical decomposition of semi-linear sets” [ D’Alessandro, Intrigila, and Varricchio, 2010, Quasi-polynomials, linear Diophantine equations and semi-linear sets, to appear in Theoret. Comput. Sci. ] Ambiguity of u ∗ 1 · · · u ∗ n 3. Arguments of Combinatorics of variable-length codes 4. Arguments of elementary number theory F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 19/30

  23. Faithful representation by semilinear set Theorem ( Eilenberg Cross-section, 1974) Let α : A ∗ → B ∗ be a morphism and let L be a rational language of A ∗ . There exists a rational subset L ′ of L such that α maps bijectively L ′ of α ( L ) Theorem (Eilenberg and Sch¨ utzenberger, 1969) Every semi-linear set is represented as a finite and disjoint union of unambiguous linear sets F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 20/30

  24. Faithful representation by semilinear set Theorem ( Eilenberg Cross-section, 1974) Let α : A ∗ → B ∗ be a morphism and let L be a rational language of A ∗ . There exists a rational subset L ′ of L such that α maps bijectively L ′ of α ( L ) Theorem (Eilenberg and Sch¨ utzenberger, 1969) Every semi-linear set is represented as a finite and disjoint union of unambiguous linear sets Every semi-linear set is semi-simple set F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 20/30

  25. Faithful representation by semilinear set φ : N k − → u ∗ 1 u ∗ 2 · · · u ∗ k , φ ( n 1 , . . . , n k ) = u n 1 1 u n 2 2 · · · u n k k Theorem If L is bounded context-free, then there exists a semi-simple set B of N k such that φ ( B ) = L and φ is injective on B F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 21/30

  26. The basic case φ : N k − → u ∗ 1 u ∗ 2 · · · u ∗ k , φ ( B ) = L B = { b 0 + b 1 n 1 + · · · + b m n m : n i ∈ N } b 0 , b 1 , . . . , b m ∈ N k F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 22/30

  27. The basic case φ ( B ) = L B = { b 0 + b 1 n 1 + · · · + b m n m : n i ∈ N } F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 23/30

  28. The basic case φ ( B ) = L B = { b 0 + b 1 n 1 + · · · + b m n m : n i ∈ N } u = φ ( b 0 + n 1 b 1 + · · · + n m b m ) F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 23/30

  29. The basic case φ ( B ) = L B = { b 0 + b 1 n 1 + · · · + b m n m : n i ∈ N } u = φ ( b 0 + n 1 b 1 + · · · + n m b m ) Because of some elementary properties of φ and ψ , one has: F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 23/30

  30. The basic case φ ( B ) = L B = { b 0 + b 1 n 1 + · · · + b m n m : n i ∈ N } u = φ ( b 0 + n 1 b 1 + · · · + n m b m ) Because of some elementary properties of φ and ψ , one has: ψ ( u ) = ψ ( φ ( b 0 )) + n 1 ψ ( φ ( b 1 )) + · · · + n m ψ ( φ ( b m )) F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 23/30

  31. The basic case The latter formula suggests that a natural candidate for the commutative equivalence of L is: L ′ = φ ( b 0 ) φ ( b 1 ) ∗ · · · φ ( b m ) ∗ F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 24/30

  32. The basic case Indeed, taking L ′ = φ ( b 0 ) φ ( b 1 ) ∗ · · · φ ( b m ) ∗ one defines the function → L ′ f : L − as: f ( u ) = f ( φ ( b 0 + n 1 b 1 + · · · + n m b m )) = F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 25/30

  33. The basic case Indeed, taking L ′ = φ ( b 0 ) φ ( b 1 ) ∗ · · · φ ( b m ) ∗ one defines the function → L ′ f : L − as: f ( u ) = f ( φ ( b 0 + n 1 b 1 + · · · + n m b m )) = φ ( b 0 ) φ ( b 1 ) n 1 · · · φ ( b m ) n m F. D’Alessandro, B. Intrigila Prague, September 12-16, 2011 25/30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend