on periodic solutions of 2 periodic lyness difference
play

On periodic solutions of 2periodic Lyness difference equations nosa - PowerPoint PPT Presentation

On periodic solutions of 2periodic Lyness difference equations nosa 2 and Marc Rogalski 3 Guy Bastien 1 , V ctor Ma 1 Institut Math ematique de Jussieu, Universit e Paris 6 and CNRS, 2 DMA3-CoDALab, Universitat Polit` ecnica de


  1. On periodic solutions of 2–periodic Lyness difference equations nosa 2 and Marc Rogalski 3 Guy Bastien 1 , V´ ıctor Ma˜ 1 Institut Math´ ematique de Jussieu, Universit´ e Paris 6 and CNRS, 2 DMA3-CoDALab, Universitat Polit` ecnica de Catalunya ∗ . 3 Laboratoire Paul Painlev´ e, Universit´ e de Lille 1; Universit´ e Paris 6 and CNRS, 18th International Conference on Difference Equations and Applications July 2012, Barcelona, Spain. ∗ Supported by MCYT’s grant DPI2011-25822 and SGR program. Bastien, Ma˜ nosa & Rogalski (Paris 6-UPC) 2-periodic Lyness’ equations 18th ICDEA 1 / 13

  2. We study the set of periods of the 2-periodic Lyness’ equations u n + 2 = a n + u n + 1 , (1) u n where � a for n = 2 ℓ + 1 , a n = (2) b for n = 2 ℓ, and being ( u 1 , u 2 ) ∈ Q + ; ℓ ∈ N and a > 0 , b > 0. This can be done using the composition map: � a + y � , a + bx + y F b , a ( x , y ) := ( F b ◦ F a )( x , y ) = , (3) x xy � � y , α + y where F a and F b are the Lyness maps: F α ( x , y ) = . Indeed: x F b F b F a F a F a ( u 1 , u 2 ) − → ( u 2 , u 3 ) − → ( u 3 , u 4 ) − → ( u 4 , u 5 ) − → ( u 5 , u 6 ) − → · · · Bastien, Ma˜ nosa & Rogalski (Paris 6-UPC) 2-periodic Lyness’ equations 18th ICDEA 2 / 13

  3. The map F b , a : • Is a QRT map whose first integral is (Quispel, Roberts, Thompson; 1989): V b , a ( x , y ) = ( bx + a )( ay + b )( ax + by + ab ) , xy see also (Janowski, Kulenovi´ c, Nurkanovi´ c; 2007) and (Feuer, Janowski, Ladas; 1996). • Has a unique fixed point ( x c , y c ) ∈ Q + , which is the unique global minimum of V b , a in Q + . • Setting h c := V b , a ( x c , y c ) , for h > h c the level sets { V b , a = h } ∩ Q + are the closed curves. h := { ( bx + a )( ay + b )( ax + by + ab ) − hxy = 0 } ∩ Q + for h > h c . C + The dynamics of F b , a restricted to C + h is conjugate to a rotation with associated rotation number θ b , a ( h ) . Bastien, Ma˜ nosa & Rogalski (Paris 6-UPC) 2-periodic Lyness’ equations 18th ICDEA 3 / 13

  4. Theorem A Consider the family F b , a with a , b > 0 . (i) If ( a , b ) � = ( 1 , 1 ) , then ∃ p 0 ( a , b ) ∈ N s.t. for any p > p 0 ( a , b ) , ∃ at least an oval C + h filled by p–periodic orbits. (ii) The set of periods arising in the family { F b , a , a > 0 , b > 0 } restricted to Q + contains all prime periods except 2 , 3 , 4 , 6 , 10 . Corollary. Consider the 2 –periodic Lyness’ recurrence for a , b > 0 and positive initial conditions u 1 and u 2 . (i) If ( a , b ) � = ( 1 , 1 ) , then ∃ p 0 ( a , b ) ∈ N , s.t. for any p > p 0 ( a , b ) ∃ continua of initial conditions giving 2 p–periodic sequences. (ii) The set of prime periods arising when ( a , b ) ∈ ( 0 , ∞ ) 2 and positive initial conditions are considered contains all the even numbers except 4 , 6 , 8 , 12 , 20 . If a � = b, then it does not appear any odd period, except 1 . The value p 0 ( a , b ) is computable for an open and dense set in the parameter space. Bastien, Ma˜ nosa & Rogalski (Paris 6-UPC) 2-periodic Lyness’ equations 18th ICDEA 4 / 13

  5. To compute the allowed periods, the main issues to take into account are: • The fact that the rotation number function θ b , a ( h ) is continuous in [ h c , + ∞ ) . • The fact that generically θ b , a ( h c ) � = h → + ∞ θ b , a ( h ) ⇒ ∃ I ( a , b ) , a rotation interval . lim Proposition B. � 1 � �� 1 1 2 lim θ b , a ( h ) = σ ( a , b ) := arccos − 2 + , and h → + ∞ θ b , a ( h ) = lim . h → h + 2 π 2 x c y c 5 c Corollary � � σ ( a , b ) , 2 Set I ( a , b ) := . 5 • If σ ( a , b ) � = 2 / 5 ∀ θ ∈ I ( a , b ) , ∃ an oval C + h s.t. F b , a ( C + h ) is conjugate to a rotation , with a rotation number θ b , a ( h ) = θ . • In particular, ∀ irreducible q / p ∈ I ( a , b ) , ∃ periodic orbits of F b , a of prime period p . Bastien, Ma˜ nosa & Rogalski (Paris 6-UPC) 2-periodic Lyness’ equations 18th ICDEA 5 / 13

  6. The periods of the family F b , a . Using the previous results with the family a = b 2 we found that: � 1 � � � � 3 , 1 I ( b 2 , b ) = ⊂ I ( a , b ) ⊂ Image ( θ b , a ( h c , + ∞ )) . 2 b > 0 a > 0 , b > 0 a > 0 , b > 0 Proposition. • For each θ in ( 1 / 3 , 1 / 2 ) ∃ a , b > 0 and an oval C + h , s.t. F b , a ( C + h ) is conjugate to a rotation with rotation number θ b , a ( h ) = θ. • In particular, ∀ irreducible q / p ∈ ( 1 / 3 , 1 / 2 ) , ∃ p-periodic orbits of F b , a We’ll know some periods of { F b , a , a , b > 0 } ⇔ We know which are the irreducible fractions in ( 1 / 3 , 1 / 2 ) Bastien, Ma˜ nosa & Rogalski (Paris 6-UPC) 2-periodic Lyness’ equations 18th ICDEA 6 / 13

  7. Lemma (Cima, Gasull, M; 2007) Given ( c , d ) ; Let p 1 = 2 , p 2 = 3 , p 3 , . . . , p n , . . . be all the prime numbers. • Let p m + 1 be the smallest prime number satisfying that p m + 1 > max ( 3 / ( d − c ) , 2 ) , • Given any prime number p n , 1 ≤ n ≤ m , let s n be the smallest natural number such that p sn > 4 / ( d − c ) . n • Set p 0 := p s 1 − 1 p s 2 − 1 · · · p sm − 1 . m 1 2 Then, for any p > p 0 ∃ an irreducible fraction q / p s.t. q / p ∈ ( c , d ) . Proof of Theorem A (ii): • We apply the above result to ( 1 / 3 , 1 / 2 ) . ∀ p ∈ N , s.t. p > p 0 p 0 := 2 4 · 3 3 · 5 · 7 · 11 · 13 · 17 = 12 252 240 , ∃ an irreducible fraction q / p ∈ ( 1 / 3 , 1 / 2 ) . • A finite checking determines which values of p ≤ p 0 s.t. q / p ∈ ( 1 / 3 , 1 / 2 ) , resulting that there appear irreducible fractions with all the denominators except 2 , 3 , 4 , 6 and 10. • Proposition C = ⇒ ∃ a , b > 0 s.t. ∃ an oval with rotation number θ b , a ( h ) = q / p , thus giving rise to p –periodic orbits of F b , a for all allowed p . • Still it must be proved that 2, 3, 4, 6 and 10 are forbidden, since � � I ( a , b ) ⊆ Image θ b , a ( h c , + ∞ ) Bastien, Ma˜ nosa & Rogalski (Paris 6-UPC) 2-periodic Lyness’ equations 18th ICDEA 7 / 13

  8. Continuity and asymptotic behavior of θ b , a ( h ) . The curves C h , in homogeneous coordinates [ x : y : t ] ∈ C P 2 , are � C h = { ( bx + at )( ay + bt )( ax + by + abt ) − hxyt = 0 } . The points H = [ 1 : 0 : 0 ]; V = [ 0 : 1 : 0 ]; D = [ b : − a : 0 ] are common to all curves Proposition If a > 0 and b > 0 , and for all h > h c , the curves � C h are elliptic. Bastien, Ma˜ nosa & Rogalski (Paris 6-UPC) 2-periodic Lyness’ equations 18th ICDEA 8 / 13

  9. � � F b , a extends to C P 2 as � ayt + y 2 : at 2 + bxt + yt : xy F b , a ([ x : y : t ]) = . Lemma. Relation between the dynamics of F b , a and the group structure of C h (*) For each h s.t. � C h is elliptic, � F b , a | � ( P ) = P + H C h Where + is the addition of the group law of � C h taking the infinite point V as the zero element. Observe that F n ( P ) = P + n H , so � C h is full of p -periodic orbits ⇔ pH = V i.e. H is a torsion point of � C h . (*) Birational maps preserving elliptic curves can be explained using its group structure (Jogia, Roberts, Vivaldi; 2006). Bastien, Ma˜ nosa & Rogalski (Paris 6-UPC) 2-periodic Lyness’ equations 18th ICDEA 9 / 13

  10. Instead of looking to a normal form for F we look for a normal form for � C h . � � � � ∼ � = E L , + , � � C h , + , V − → V � G | E L : P �→ P + � � F | � C h : P �→ P + H − → H Where � E L is the Weierstrass Normal Form which in the affine plane is: E L = { y 2 = 4 x 3 − g 2 x − g 3 } with g i := g i ( a , b , h ) . WHY? Because we can parameterize it using the Weierstrass ℘ function... 1 ...that gives an integral expression for the rotation number function . 2 � + ∞ d s � 4 s 3 − g 2 s − g 3 X ( L ) 2 Θ( L ) = � + ∞ where θ b , a ( h ) ∼ Θ( L ) d s � 4 s 3 − g 2 s − g 3 e 1 The asymptotics of this integral expression can be studied. 3 This scheme was used in (Bastien, Rogalski; 2004). Bastien, Ma˜ nosa & Rogalski (Paris 6-UPC) 2-periodic Lyness’ equations 18th ICDEA 10 / 13

  11. The Weierstrass normal form of C h is E L = { y 2 = 4 x 3 − g 2 x − g 3 } where     7 11 � � 1 1  L 8 +  − L 12 + p i ( α, β ) L i q i ( α, β ) L i   , g 2 = and g 3 = 192 13824 i = 4 i = 6 being p 7 ( a , b ) = − 4 ( α + β + 1 ) , � � 3 ( α − β ) 2 + 2 ( α + β ) + 3 p 6 ( a , b ) = 2 , � � α 2 − 4 βα + β 2 − 1 p 5 ( a , b ) = − 4 ( α + β − 1 ) , ( α + β − 1 ) 4 . p 4 ( a , b ) = and q 11 ( a , b ) = 6 ( α + β + 1 ) , � � − 5 α 2 + 2 αβ − 5 β 2 − 6 α − 6 β − 5 q 10 ( a , b ) = 3 � � 5 α 3 − 12 α 2 β − 12 αβ 2 + 5 β 3 + 3 α 2 − 3 αβ + 3 β 2 + 3 α + 3 β + 5 q 9 ( a , b ) = 4 � − 5 α 4 + 16 α 3 β − 30 α 2 β 2 + 16 αβ 3 − 5 β 4 + 4 α 3 q 8 ( a , b ) = 3 � − 12 α 2 β − 12 αβ 2 + 4 β 3 + 2 α 2 − 8 αβ + 2 β 2 + 4 α + 4 β − 5 � � α 2 − 4 αβ + β 2 − 1 ( α + β − 1 ) 3 q 7 ( a , b ) = 6 − ( α + β − 1 ) 6 q 6 ( a , b ) = where α = a / b 2 and b / a 2 and L → + ∞ ⇔ h → + ∞ . Bastien, Ma˜ nosa & Rogalski (Paris 6-UPC) 2-periodic Lyness’ equations 18th ICDEA 11 / 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend