on improvements in exact real arithmetic for initial
play

On improvements in Exact Real Arithmetic for Initial Value Problems - PowerPoint PPT Presentation

On improvements in Exact Real Arithmetic for Initial Value Problems Franz Braue 1 Margarita Korovina 2 Norbert Mller 1 1 Universitt Trier 2 IIS Novosibirsk CCC, Kochel, 2015-09-17 1 Background and Setting Motivation iRRAM 2 Algorithm 3


  1. On improvements in Exact Real Arithmetic for Initial Value Problems Franz Brauße 1 Margarita Korovina 2 Norbert Müller 1 1 Universität Trier 2 IIS Novosibirsk CCC, Kochel, 2015-09-17

  2. 1 Background and Setting Motivation iRRAM 2 Algorithm 3 Radius of Convergance Picard-Lindelöf’s method Improved by Integrals Iterative Improvement 4 Countering wrapping effects Lipschitz bounds reducing wrapping Taylor Models 5 Future Work and References Brauße, Korovina, Müller (UT, IIS) Using ERA for IVPs CCC, Kochel, 2015-09-17 2 / 20

  3. Background and Setting Motivation Why another approach to solving IVPs? Goal • Provide reliable solutions up to arbitrary accuracy, efficiently! Setting: Computable Analysis • Theoretical foundation for computations with continuous objects: Real Numbers, Functions, Sets, . . . Result: IVP-solver in iRRAM • C++ implementation of concepts from Computable Analysis. • x ∈ R is represented as sequence ( c i + e i I ) i converging to x where c i , e i dyadic and I = [− 1, 1 ] . Brauße, Korovina, Müller (UT, IIS) Using ERA for IVPs CCC, Kochel, 2015-09-17 3 / 20

  4. Background and Setting iRRAM Provide methods / tools suitable for use by engineers w/o in-depth knowledge about Real computation, but who assume to perform those. iRRAM works on names: • Cauchy: REAL • τ TM : TM , linear multivariate poly w/ interval coeffs. T : I k → R d , k can vary over course of computation due to polishing • τ A for other wrappings A ? Algorithms dependant on actual rep- Algorithms work independent of con- resentation of Reals (low level): crete backend/representation (high level): • arithmetic • elementary funs • lim • solving PIVP systems (including • evaluation of power series bounds to R, M, L ) • Lipschitzify Brauße, Korovina, Müller (UT, IIS) Using ERA for IVPs CCC, Kochel, 2015-09-17 4 / 20

  5. Background and Setting iRRAM Real Computation computation − − − − − − − → − accuracy x ± 2 − 21 y ± 2 − 19 − ↑ − − x ± 2 − 53 y ± 2 − 50 z ± 2 − 45 · · · − ← x ± 2 − 140 y ± 2 − 136 z ± 2 − 128 · · · . . . ... . . . . . . • Computable Analysis: complete table • Numerical Computation: horizontal line • iRRAM: finite path Brauße, Korovina, Müller (UT, IIS) Using ERA for IVPs CCC, Kochel, 2015-09-17 5 / 20

  6. Background and Setting iRRAM Real Computation computation − − − − − − − → − accuracy x ± 2 − 21 y ± 2 − 19 − ↑ − − x ± 2 − 53 y ± 2 − 50 z ± 2 − 45 · · · − ← x ± 2 − 140 y ± 2 − 136 z ± 2 − 128 · · · . . . ... . . . . . . • Computable Analysis: complete table • Numerical Computation: horizontal line • iRRAM: finite path Brauße, Korovina, Müller (UT, IIS) Using ERA for IVPs CCC, Kochel, 2015-09-17 5 / 20

  7. Background and Setting iRRAM Real Computation computation − − − − − − − → − accuracy x ± 2 − 21 y ± 2 − 19 − ↑ − − x ± 2 − 53 y ± 2 − 50 z ± 2 − 45 · · · − ← x ± 2 − 140 y ± 2 − 136 z ± 2 − 128 · · · . . . ... . . . . . . • Computable Analysis: complete table • Numerical Computation: horizontal line • iRRAM: finite path Brauße, Korovina, Müller (UT, IIS) Using ERA for IVPs CCC, Kochel, 2015-09-17 5 / 20

  8. Background and Setting Polynomial ODE systems Polynomial ODE system f : R × R d → R d in d + 1 variables, then solution d -dimensional polynomial � y : R → R d described by ODE system � d y ( t ) = � d t � f ( t, � y ( t )) Usually we also have an initial value � y 0 = � y ( t 0 ) at some t 0 . • virtually all real-world ODE systems are describable by poly right hand side � f • example systems: Van-der-Pol oscillator, n -Body problem, double pendulum, Lorentz attractor, . . . Brauße, Korovina, Müller (UT, IIS) Using ERA for IVPs CCC, Kochel, 2015-09-17 6 / 20

  9. Background and Setting Polynomial ODE systems Example: Van-der-Pol equation, α = 3 y 1 = y 2 y 1 ( 0 ) = 1 ˙ y 2 = αy 2 − y 1 − αy 2 ˙ 1 y 2 y 2 ( 0 ) = 1 vdp-3 4 2 y 2 ( t ) y 2 ( t ) 0 -2 -4 020406080 t 2 1 0 -1 100 -2 y 1 ( t ) Brauße, Korovina, Müller (UT, IIS) Using ERA for IVPs CCC, Kochel, 2015-09-17 7 / 20

  10. Algorithm 1 Background and Setting Motivation iRRAM 2 Algorithm 3 Radius of Convergance Picard-Lindelöf’s method Improved by Integrals Iterative Improvement 4 Countering wrapping effects Lipschitz bounds reducing wrapping Taylor Models 5 Future Work and References Brauße, Korovina, Müller (UT, IIS) Using ERA for IVPs CCC, Kochel, 2015-09-17 8 / 20

  11. Algorithm Approach to solving such IVP systems Classical power series method, e.g. derivable through Picard iteration 3m + 1 initial value � y m � → sequence of Taylor series coeffs ( � a n ) n a n � ≤ MR − n ❀ 3m + 2 bounds R on radius of convergence and M : � � bounded truncation error ❀ power series for � y ( t ) while t ∈ ( t m ± R ) y m + 1 = � a n t n 3m + 3 choose t m + 1 and evaluate � n � m + 1 solution y ( t ) initial condition evaluation recursion inside of on circle of coefficients convergence sum power function series summation time t Brauße, Korovina, Müller (UT, IIS) Using ERA for IVPs CCC, Kochel, 2015-09-17 9 / 20

  12. Algorithm Approach to solving such IVP systems Classical power series method, e.g. derivable through Picard iteration 3m + 1 initial value � y m � → sequence of Taylor series coeffs ( � a n ) n a n � ≤ MR − n ❀ 3m + 2 bounds R on radius of convergence and M : � � bounded truncation error ❀ power series for � y ( t ) while t ∈ ( t m ± R ) y m + 1 = � a n t n 3m + 3 choose t m + 1 and evaluate � n � m + 1 solution y ( t ) initial condition evaluation recursion inside of on circle of coefficients convergence sum power function series summation time t Brauße, Korovina, Müller (UT, IIS) Using ERA for IVPs CCC, Kochel, 2015-09-17 9 / 20

  13. Algorithm Approach to solving such IVP systems Classical power series method, e.g. derivable through Picard iteration 3m + 1 initial value � y m � → sequence of Taylor series coeffs ( � a n ) n a n � ≤ MR − n ❀ 3m + 2 bounds R on radius of convergence and M : � � bounded truncation error ❀ power series for � y ( t ) while t ∈ ( t m ± R ) y m + 1 = � a n t n 3m + 3 choose t m + 1 and evaluate � n � m + 1 solution y ( t ) initial condition evaluation recursion inside of on circle of coefficients convergence sum power function series summation time t Brauße, Korovina, Müller (UT, IIS) Using ERA for IVPs CCC, Kochel, 2015-09-17 9 / 20

  14. Algorithm Approach to solving such IVP systems Classical power series method, e.g. derivable through Picard iteration 3m + 1 initial value � y m � → sequence of Taylor series coeffs ( � a n ) n a n � ≤ MR − n ❀ 3m + 2 bounds R on radius of convergence and M : � � bounded truncation error ❀ power series for � y ( t ) while t ∈ ( t m ± R ) y m + 1 = � a n t n 3m + 3 choose t m + 1 and evaluate � n � m + 1 solution y ( t ) initial condition evaluation recursion inside of on circle of coefficients convergence sum power function series summation time t Brauße, Korovina, Müller (UT, IIS) Using ERA for IVPs CCC, Kochel, 2015-09-17 9 / 20

  15. Algorithm Approach to solving such IVP systems Classical power series method, e.g. derivable through Picard iteration 3m + 1 initial value � y m � → sequence of Taylor series coeffs ( � a n ) n a n � ≤ MR − n ❀ 3m + 2 bounds R on radius of convergence and M : � � bounded truncation error ❀ power series for � y ( t ) while t ∈ ( t m ± R ) y m + 1 = � a n t n 3m + 3 choose t m + 1 and evaluate � n � m + 1 solution y ( t ) initial condition evaluation recursion inside of on circle of coefficients convergence sum power function series summation time t Brauße, Korovina, Müller (UT, IIS) Using ERA for IVPs CCC, Kochel, 2015-09-17 9 / 20

  16. Algorithm Approach to solving such IVP systems Classical power series method, e.g. derivable through Picard iteration 3m + 1 initial value � y m � → sequence of Taylor series coeffs ( � a n ) n a n � ≤ MR − n ❀ 3m + 2 bounds R on radius of convergence and M : � � bounded truncation error ❀ power series for � y ( t ) while t ∈ ( t m ± R ) y m + 1 = � a n t n 3m + 3 choose t m + 1 and evaluate � n � m + 1 solution y ( t ) initial condition evaluation recursion inside of on circle of coefficients convergence sum power function series summation time t Brauße, Korovina, Müller (UT, IIS) Using ERA for IVPs CCC, Kochel, 2015-09-17 9 / 20

  17. Algorithm Approach to solving such IVP systems Classical power series method, e.g. derivable through Picard iteration 3m + 1 initial value � y m � → sequence of Taylor series coeffs ( � a n ) n a n � ≤ MR − n ❀ 3m + 2 bounds R on radius of convergence and M : � � bounded truncation error ❀ power series for � y ( t ) while t ∈ ( t m ± R ) y m + 1 = � a n t n 3m + 3 choose t m + 1 and evaluate � n � m + 1 solution y ( t ) initial condition evaluation recursion inside of on circle of coefficients convergence sum power function series summation time t Brauße, Korovina, Müller (UT, IIS) Using ERA for IVPs CCC, Kochel, 2015-09-17 9 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend