on identifying codes and bondy s theorem on induced
play

On identifying codes and Bondys theorem on induced subsets F. - PowerPoint PPT Presentation

On identifying codes and Bondys theorem on induced subsets F. Foucaud 1 , E. Guerrini 2 , M. Kove 1 , R. Naserasr 1 , A. Parreau 2 , P. Valicov 1 1: LaBRI, Universit de Bordeaux, France 2: Institut Fourier, Universit de Grenoble,


  1. On identifying codes and Bondy’s theorem on “induced subsets” F. Foucaud 1 , E. Guerrini 2 , M. Kovše 1 , R. Naserasr 1 , A. Parreau 2 , P. Valicov 1 1: LaBRI, Université de Bordeaux, France 2: Institut Fourier, Université de Grenoble, France ANR IDEA (ANR-08-EMER-007, 2009-2011) 8FCC (LRI, Orsay) - July 02, 2010 F. Foucaud (LaBRI, U. Bordeaux) On id. codes and related probems 8FCC - 02/07/2010 1 / 27

  2. Outline 1 Introduction, definitions, examples 2 Finite and infinite undirected graphs 3 Finite digraphs 4 An application to Bondy’s theorem F. Foucaud (LaBRI, U. Bordeaux) On id. codes and related probems 8FCC - 02/07/2010 2 / 27

  3. Locating a fire in a building simple, undirected graph: models a building F. Foucaud (LaBRI, U. Bordeaux) On id. codes and related probems 8FCC - 02/07/2010 3 / 27

  4. Locating a fire in a building simple, undirected graph: models a building a c d b e f F. Foucaud (LaBRI, U. Bordeaux) On id. codes and related probems 8FCC - 02/07/2010 4 / 27

  5. Locating a fire in a building simple detectors: able to detect a fire in a neighbouring room { b , c } { b } { c } a c d { b , c } b e f { b } { b , c } F. Foucaud (LaBRI, U. Bordeaux) On id. codes and related probems 8FCC - 02/07/2010 5 / 27

  6. Locating a fire in a building simple detectors: able to detect a fire in a neighbouring room { b , c } { b } { c } a c d { b , c } b e f { b } { b , c } F. Foucaud (LaBRI, U. Bordeaux) On id. codes and related probems 8FCC - 02/07/2010 6 / 27

  7. Locating a fire in a building simple detectors: able to detect a fire in a neighbouring room { b , c , d } { a , b } { c , d } a c d { a , b , c } b e f { b } { b , c } F. Foucaud (LaBRI, U. Bordeaux) On id. codes and related probems 8FCC - 02/07/2010 7 / 27

  8. Identifying codes: definition Let N [ u ] be the set of vertices v s.t. d ( u , v ) ≤ 1 Definition: identifying code of a graph G (Karpovsky et al. 1998) subset C of V such that: C is a dominating set in G : for all u ∈ V , N [ u ] ∩ C � = ∅ , and C is a separating code in G : ∀ u � = v of V , N [ u ] ∩ C � = N [ v ] ∩ C F. Foucaud (LaBRI, U. Bordeaux) On id. codes and related probems 8FCC - 02/07/2010 8 / 27

  9. Identifying codes: definition Let N [ u ] be the set of vertices v s.t. d ( u , v ) ≤ 1 Definition: identifying code of a graph G (Karpovsky et al. 1998) subset C of V such that: C is a dominating set in G : for all u ∈ V , N [ u ] ∩ C � = ∅ , and C is a separating code in G : ∀ u � = v of V , N [ u ] ∩ C � = N [ v ] ∩ C Notation γ ID ( G ) : minimum cardinality of an identifying code of G F. Foucaud (LaBRI, U. Bordeaux) On id. codes and related probems 8FCC - 02/07/2010 8 / 27

  10. Identifiable graphs Remark: not all graphs have an identifying code u and v are twins if N [ u ] = N [ v ] . A graph is identifiable iff it is twin-free (i.e. it has no twin vertices). F. Foucaud (LaBRI, U. Bordeaux) On id. codes and related probems 8FCC - 02/07/2010 9 / 27

  11. Identifiable graphs Remark: not all graphs have an identifying code u and v are twins if N [ u ] = N [ v ] . A graph is identifiable iff it is twin-free (i.e. it has no twin vertices). Non-identifiable graphs F. Foucaud (LaBRI, U. Bordeaux) On id. codes and related probems 8FCC - 02/07/2010 9 / 27

  12. Identifiable graphs Remark: not all graphs have an identifying code u and v are twins if N [ u ] = N [ v ] . A graph is identifiable iff it is twin-free (i.e. it has no twin vertices). Non-identifiable graphs F. Foucaud (LaBRI, U. Bordeaux) On id. codes and related probems 8FCC - 02/07/2010 9 / 27

  13. An upper bound Theorem (Gravier, Moncel, 2007) Let G be a finite identifiable graph with n vertices and at least one edge. Then γ ID ( G ) ≤ n − 1. F. Foucaud (LaBRI, U. Bordeaux) On id. codes and related probems 8FCC - 02/07/2010 10 / 27

  14. An upper bound Theorem (Gravier, Moncel, 2007) Let G be a finite identifiable graph with n vertices and at least one edge. Then γ ID ( G ) ≤ n − 1. Corollary The only finite graphs having their whole vertex set as a minimum identifying code are the stable sets K n . F. Foucaud (LaBRI, U. Bordeaux) On id. codes and related probems 8FCC - 02/07/2010 10 / 27

  15. The graph A ∞ ( − 2 , 0 ) ( − 1 , 0 ) ( 0 , 0 ) ( 1 , 0 ) ( 2 , 0 ) ... ... Infinite clique on Z ... ... Infinite clique on Z ( − 2 , 0 ) ( − 1 , 0 ) ( 0 , 0 ) ( 1 , 0 ) ( 2 , 0 ) F. Foucaud (LaBRI, U. Bordeaux) On id. codes and related probems 8FCC - 02/07/2010 11 / 27

  16. The graph A ∞ ( − 2 , 0 ) ( − 1 , 0 ) ( 0 , 0 ) ( 1 , 0 ) ( 2 , 0 ) ... ... Infinite clique on Z ... ... Infinite clique on Z ( − 2 , 0 ) ( − 1 , 0 ) ( 0 , 0 ) ( 1 , 0 ) ( 2 , 0 ) Proposition (Charon, Hudry, Lobstein, 2007) A ∞ needs all its vertices in any identifying code. F. Foucaud (LaBRI, U. Bordeaux) On id. codes and related probems 8FCC - 02/07/2010 11 / 27

  17. The graph A ∞ ( − 2 , 0 ) ( − 1 , 0 ) ( 0 , 0 ) ( 1 , 0 ) ( 2 , 0 ) ... ... Infinite clique on Z ... ... Infinite clique on Z ( − 2 , 0 ) ( − 1 , 0 ) ( 0 , 0 ) ( 1 , 0 ) ( 2 , 0 ) Proposition (Charon, Hudry, Lobstein, 2007) A ∞ needs all its vertices in any identifying code. F. Foucaud (LaBRI, U. Bordeaux) On id. codes and related probems 8FCC - 02/07/2010 12 / 27

  18. The graph A ∞ ( − 2 , 0 ) ( − 1 , 0 ) ( 0 , 0 ) ( 1 , 0 ) ( 2 , 0 ) ... ... Infinite clique on Z ... ... Infinite clique on Z ( − 2 , 0 ) ( − 1 , 0 ) ( 0 , 0 ) ( 1 , 0 ) ( 2 , 0 ) Proposition (Charon, Hudry, Lobstein, 2007) A ∞ needs all its vertices in any identifying code. F. Foucaud (LaBRI, U. Bordeaux) On id. codes and related probems 8FCC - 02/07/2010 13 / 27

  19. Constructing infinite graphs Construction of Ψ( H , ρ ) H : finite or infinite simple graph with perfect matching ρ : perfect matching of H Replace every edge { u , v } of ρ by a copy of A ∞ complete join along the other edges of H x 2 Ψ y 2 − → y 1 y 3 x 1 x 3 H and ρ = { x 1 y 1 , x 2 y 2 , x 3 y 3 }

  20. Constructing infinite graphs Construction of Ψ( H , ρ ) H : finite or infinite simple graph with perfect matching ρ : perfect matching of H Replace every edge { u , v } of ρ by a copy of A ∞ complete join along the other edges of H x 2 Ψ y 2 − → Y 1 y 1 y 3 X 1 x 1 x 3 A ∞ H and ρ = { x 1 y 1 , x 2 y 2 , x 3 y 3 }

  21. Constructing infinite graphs Construction of Ψ( H , ρ ) H : finite or infinite simple graph with perfect matching ρ : perfect matching of H Replace every edge { u , v } of ρ by a copy of A ∞ complete join along the other edges of H X 2 A ∞ Y 2 x 2 Ψ y 2 − → Y 1 y 1 y 3 X 1 x 1 x 3 A ∞ H and ρ = { x 1 y 1 , x 2 y 2 , x 3 y 3 }

  22. Constructing infinite graphs Construction of Ψ( H , ρ ) H : finite or infinite simple graph with perfect matching ρ : perfect matching of H Replace every edge { u , v } of ρ by a copy of A ∞ complete join along the other edges of H X 2 A ∞ Y 2 x 2 Ψ y 2 − → Y 1 y 1 y 3 X 1 x 1 x 3 A ∞ A ∞ H and ρ = { x 1 y 1 , x 2 y 2 , x 3 y 3 } Y 3 X 3

  23. Constructing infinite graphs Construction of Ψ( H , ρ ) H : finite or infinite simple graph with perfect matching ρ : perfect matching of H Replace every edge { u , v } of ρ by a copy of A ∞ complete join along the other edges of H X 2 A ∞ Y 2 x 2 Ψ y 2 − → ⊳ ⊳ Y 1 ⊲ ⊲ y 1 y 3 X 1 x 1 x 3 A ∞ A ∞ H and ρ = { x 1 y 1 , x 2 y 2 , x 3 y 3 } Y 3 X 3 F. Foucaud (LaBRI, U. Bordeaux) On id. codes and related probems 8FCC - 02/07/2010 14 / 27

  24. The classification Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2010) Let G be a connected infinite identifiable undirected graph. The only identifying code of G is V ( G ) if and only if G = Ψ( H , ρ ) for some graph H with a perfect matching ρ . F. Foucaud (LaBRI, U. Bordeaux) On id. codes and related probems 8FCC - 02/07/2010 15 / 27

  25. Idcodes in digraphs Let N − [ u ] be the set of incoming neighbours of u , plus u Definition: identifying code of a digraph D = ( V , A ) subset C of V such that: C is a dominating set in D : for all u ∈ V , N − [ u ] ∩ C � = ∅ , and C is a separating code in D : for all u � = v , N − [ u ] ∩ C � = N − [ v ] ∩ C { c , f } { b } { c } a c d { b , c , e } b e f { e } { b , c , f } F. Foucaud (LaBRI, U. Bordeaux) On id. codes and related probems 8FCC - 02/07/2010 16 / 27

  26. Idcodes in digraphs Let N − [ u ] be the set of incoming neighbours of u , plus u Definition: identifying code of a digraph D = ( V , A ) subset C of V such that: C is a dominating set in D : for all u ∈ V , N − [ u ] ∩ C � = ∅ , and C is a separating code in D : for all u � = v , N − [ u ] ∩ C � = N − [ v ] ∩ C { c , f } { b } { c } a c d { b , c , e } b e f { e } { b , c , f } Definition − → γ ID ( D ) : minimum size of an identifying code of D F. Foucaud (LaBRI, U. Bordeaux) On id. codes and related probems 8FCC - 02/07/2010 16 / 27

  27. Which graphs need n vertices? Two operations D 1 ⊕ D 2 : disjoint union of D 1 and D 2 − → ⊳ ( D ) : D joined to K 1 by incoming arcs only D 1 D 2 D − → D 1 ⊕ D 2 ⊳ ( D ) F. Foucaud (LaBRI, U. Bordeaux) On id. codes and related probems 8FCC - 02/07/2010 17 / 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend