on asymmetric quantum hypothesis testing
play

On asymmetric quantum hypothesis testing JMP, Vol 57, 6, - PowerPoint PPT Presentation

On asymmetric quantum hypothesis testing JMP, Vol 57, 6, 10.1063/1.4953582 arXiv:1612.01464 Cambyse Rouz e (Cambridge) Joint with Nilanjana Datta (University of Cambridge) and Yan Pautrat (Paris-Saclay) Workshop: Quantum trajectories,


  1. On asymmetric quantum hypothesis testing JMP, Vol 57, 6, 10.1063/1.4953582 arXiv:1612.01464 Cambyse Rouz´ e (Cambridge) Joint with Nilanjana Datta (University of Cambridge) and Yan Pautrat (Paris-Saclay) Workshop: Quantum trajectories, parameter and state estimation 23-25 Jan 2017, Toulouse January 25, 2017 1 / 31

  2. Overview Motivation: the quantum Stein lemma and its refinements 1 Second-order asymptotics in Stein’s lemma 2 Some examples 3 Finite sample size quantum hypothesis testing: the i.i.d. case 4 2 / 31

  3. Motivation: the quantum Stein lemma and its refinements Framework Let H finite dimensional Hilbert space, ρ, σ ∈ D ( H ) + , set of states on H Goal is to distinguish between: ρ (null hypothesis) and σ (alternative hypothesis) . A test is a POVM { T , 1 − T } , T ∈ B ( H ), 0 ≤ T ≤ 1 Errors when guessing are therefore given by: α ( T ) = Tr( ρ ( 1 − T )) type I error β ( T ) = Tr( σ T ) type II error Asymmetric case, minimize the type II error while controlling the type I error: β ( ǫ ) = 0 ≤ T ≤ 1 { β ( T ) | α ( T ) ≤ ǫ } . inf 3 / 31

  4. Motivation: the quantum Stein lemma and its refinements Size-dependent hypothesis testing Let H n a sequence of Hilbert spaces, { ρ n } n ∈ N , { σ n } n ∈ N ∈ D ( H n ) + . Examples: the i.i.d. case: ρ n = ρ ⊗ n σ n = σ ⊗ n . vs . Gibbs states on a lattice Λ n of size | Λ n | = n d : − βρ H ρ − βσ H σ e Λ n e Λ n ρ n := vs . σ n := � . − βσ H σ − βρ H ρ � � � Tr e Λ n Tr e Λ n Quasi-free fermions on a lattice etc. Question: Given a uniform bound ǫ on the type I errors, how quickly does β n ( ǫ ) decrease with n ? 4 / 31

  5. Motivation: the quantum Stein lemma and its refinements First-order asymptotics First proved in the i.i.d. setting Theorem (Quantum Stein’s lemma Hiai&Petz91, Ogawa&Nagaoka00) When ρ n = ρ ⊗ n , and σ n = σ ⊗ n , − 1 n log β n ( ǫ ) → D ( ρ � σ ) , ∀ ǫ ∈ (0 , 1) , where D ( ρ � σ ) = Tr( ρ (log ρ − log σ )) Umegaki’s relative entropy. r < D ( ρ � σ ) ⇒ α − 1 n →∞ − 1 n log min { α ( T n ) : β ( T n ) ≤ e − nr } := lim sup [ r − D α ( ρ � σ )] , α 0 <α< 1 r > D ( ρ � σ ) ⇒ n →∞ − 1 α − 1 n log max { (1 − α ( T n )) : β ( T n ) ≤ e − nr } = sup [ r − D ∗ α ( ρ � σ )] , where lim α 1 <α 1 α − 1 log Tr( ρ α σ 1 − α ) D α ( ρ � σ ) : = R´ enyi- α divergence, 1 1 − α D ∗ α − 1 log Tr( ρ 1 / 2 σ α ρ 1 / 2 ) α α ( ρ � σ ) : = sandwiched R´ enyi- α divergence. 5 / 31

  6. Motivation: the quantum Stein lemma and its refinements Interpretation of Stein’s lemma 1 α (1) ∞ 0 t 1 D ( ρ || σ ) 1 α (1) ∞ = 0 ≤ T n ≤ 1 { lim sup inf α ( T n ) : − lim inf n log β ( T n ) ≥ t 1 } . n n Discontinuity of α (1) ∞ : manifestation of coarse-grained analysis. Question: can we better quantify the behaviour of the asymptotic type I error by adding a sub-exponential term for the type II error? 1 1 Lots of generalisations to the non i.i.d. framework: Bjelakovic&Siegmund-Schultze04, Bjelakovic,&Deuschel&Krueger&Seiler&Siegmund-Schultze&Szkola08, Hiai&Mosonyi&Ogawa08, Mosonyi&Hiai&Ogawa&Fannes08, Brandao&Plenio10, Jaksic&Ogata&Pillet&Seiringer12, etc. 6 / 31

  7. Second-order asymptotics in Stein’s lemma Motivation: the quantum Stein lemma and its refinements 1 Second-order asymptotics in Stein’s lemma 2 Some examples 3 Finite sample size quantum hypothesis testing: the i.i.d. case 4 7 / 31

  8. Second-order asymptotics in Stein’s lemma Second-order asymptotics in the i.i.d. case Tomamichel&Hayashi13 and Li14 proved the following second-order result: Theorem (Second-order asymptotics: the i.i.d. case Tomamichel&Hayashi13, Li14 ) When ρ n = ρ ⊗ n and σ n = σ ⊗ n , − log β n ( ǫ ) = nD ( ρ � σ ) + √ ns 1 ( ǫ ) + O (log n ) , � V ( ρ � σ )Φ − 1 ( ǫ ) , s 1 ( ǫ ) := where V ( ρ � σ ) = Tr( ρ (log ρ − log σ ) 2 ) − D ( ρ � σ ) 2 quantum information variance , and Φ the cumulative distribution function of law N (0 , 1) . 1 α (2) ∞ 1 2 t 2 0 1 � α (2) � � � � ∞ ( t 2 ) = inf lim sup α ( T n ) | − lim inf log β n ( T n )+ n D ( ρ || σ ) ≥ t 2 = Φ( t 2 / V ( ρ � σ )) . √ n n 0 ≤ Tn ≤ 1 n 8 / 31

  9. Second-order asymptotics in Stein’s lemma Main result 1: Second-order asymptotics in the non-i.i.d. scenario For a given strictly increasing sequence of weights w n , under some conditions (see later), the quantum information variance rate 1 v ( { ρ n } , { σ n } ) = lim V ( ρ n � σ n ) n →∞ w n is well-defined, and: Theorem (DPR16) Fix ǫ ∈ (0 , 1) . Define t ∗ � v ( { ρ n } , { σ n } ) Φ − 1 ( ǫ ) . 2 ( ǫ ) = Then + ∞ o ( √ x ) such that ∀ n ∈ N and any Optimality: ∀ t 2 > t ∗ 2 ( ǫ ) there exists a function f t 2 ( x ) = sequence of tests T n : − log β ( T n ) ≤ D ( ρ n || σ n ) + √ w n t 2 + f t 2 ( w n ) , (1) + ∞ o ( √ x ) , there exists a sequence of test T n such that Achievability: ∀ t 2 < t ∗ 2 ( ǫ ) , ∀ f ( x ) = for n large enough: − log β n ( T n ) ≥ D ( ρ n || σ n ) + √ w n t 2 + f ( w n ) . (2) The i.i.d. case of Tomamichel&Hayashi13 and Li14 follows (Bryc ← CLT). The Berry-Esseen theorem even provides information on third order: � nV ( ρ � σ )Φ − 1 ( ǫ ) + O (log n ) , − log β n ( ǫ ) = nD ( ρ � σ ) + 9 / 31

  10. Second-order asymptotics in Stein’s lemma Key tools 1: the relative modular operator The relative modular operator is a generalisation of the Radon-Nikodym derivative for general von Neuman algebras. In finite dimensions, for two faithful states, it reduces to: A �→ ρ A σ − 1 . ∆ ρ | σ : B ( H ) → B ( H ) , ∆ ρ | σ is a positive operator, admits a spectral decomposition. Quantities of relevance can be rewritten in terms of ∆ ρ | σ : D ( ρ � σ ) = � ρ 1 / 2 , log(∆ ρ | σ )( ρ 1 / 2 ) � , where � A , B � = Tr( A ∗ B ) . Ψ s ( ρ | σ ) := log Tr( ρ 1+ s σ − s ) = log � ρ 1 / 2 , ∆ s ρ | σ ( ρ 1 / 2 ) � Define X to be the classical random variable taking values on spec(log ∆ ρ | σ ) such that for any measurable f : spec(log ∆ ρ | σ ) → R , � ρ 1 / 2 , f (log ∆ ρ | σ )( ρ 1 / 2 ) � ≡ E [ f ( X )] . f : x �→ x ⇒ E [ X ] = D ( ρ � σ ), f : x �→ e sx ⇒ log E [e sX ] = log � ρ 1 / 2 , e s log ∆ ρ | σ ( ρ 1 / 2 ) � ≡ Ψ s ( ρ | σ ), the cumulant-generating function. 10 / 31

  11. Second-order asymptotics in Stein’s lemma Key tools 2: Bryc’s theorem The following theorem is a non i.i.d. generalization of the Central limit theorem: Theorem (Bryc’s theorem Bryc93) Let ( X n ) n ∈ N be a sequence of random variables, and ( w n ) n ∈ N an increasing sequence of weights. If there exists r > 0 such that: � � e zXn ∀ n ∈ N , H n ( z ) := log E is analytic in the complex open ball B C (0 , r ) , 1 H ( x ) = lim n →∞ wn H n ( x ) exists ∀ x ∈ ( − r , r ) , 1 sup n ∈ N sup z ∈ B C (0 , r ) wn | H n ( z ) | < + ∞ , then H is analytic on B C (0 , r ) and X n − H ′ n (0) d 0 , H ′′ (0) � � √ w n − → n →∞ N , 11 / 31

  12. Second-order asymptotics in Stein’s lemma The working condition Take X n associated to log ∆ ρ n | σ n , ρ 1 / 2 ⇒ H n ( z ) = Ψ z ( ρ n | σ n ). n The conditions of Bryc’s theorem translate into: Condition Let { w n } an increasing sequence of weights. Assume there exists r > 0 such that ∀ n ∈ N , z → Ψ z ( ρ n | σ n ) is analytic in the complex open ball B C (0 , r ) , 1 H ( x ) = lim n →∞ wn Ψ z ( ρ n | σ n ) exists ∀ x ∈ ( − r , r ) , 1 sup n ∈ N sup z ∈ B C (0 , r ) wn | Ψ z ( ρ n | σ n ) | < + ∞ , Here H ′ n (0) = D ( ρ n � σ n ), By Bryc’s theorem, the quantum information variance rate 1 V ( ρ n � σ n ) ≡ H ′′ (0) v ( { ρ n } , { σ n } ) = lim w n n →∞ is well-defined. 12 / 31

  13. Second-order asymptotics in Stein’s lemma Proof of achievability (2) We will need the following crucial technical lemma: Lemma (Li14, DPR16) Let ρ, σ ∈ D + ( H ) . For all L > 0 there exists a test T such that Tr( ρ ( 1 − T )) ≤ � ρ 1 / 2 , P (0 , L ) (∆ ρ | σ )( ρ 1 / 2 ) � Tr( σ T ) ≤ L − 1 . and (3) Let L n := exp( D ( ρ n � σ n ) + √ w n t 2 + f ( w n )), f ( x ) = ◦ ( √ x ). − log β ( T n ) ≥ D ( ρ n || σ n ) + √ w n t 2 + f ( w n ) (3) ⇒ ρ n 1 / 2 , P (0 , L n ) (∆ ρ n | σ n ) ρ n 1 / 2 � α ( T n ) ≤ � , ρ n 1 / 2 , P ( −∞ , log L n ) (log ∆ ρ n | σ n ) ρ n 1 / 2 � � = . � X n − D ( ρ n || σ n ) ≤ t 2 + f ( w n ) � = P ( X n ≤ log L n ) = P . √ w n √ w n � Bryc’s theorem ⇒ RHS converges to Φ( t 2 / v ( { ρ n } , { σ n } )) < ε ⇒ for n large enough, α ( T n ) ≤ ε. Optimality (1) follows similarly from a lower bound on the total error provided by Jaksic&Ogata&Pillet&Seiringer12. 13 / 31

  14. Some examples Motivation: the quantum Stein lemma and its refinements 1 Second-order asymptotics in Stein’s lemma 2 Some examples 3 Finite sample size quantum hypothesis testing: the i.i.d. case 4 14 / 31

  15. Some examples Quantum spin systems Lattice Z d . System prepared at each site: ∀ x , H x = H . Example: particle (spin ± 1 2 ): H x = C 2 . 15 / 31

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend