odd frequency pairing in spin triplet superconductor
play

Odd frequency pairing in spin-triplet superconductor junctions - PowerPoint PPT Presentation

Odd frequency pairing in spin-triplet superconductor junctions Yukio Tanaka Nagoya University International Symposium on Physics of New Quantum phases in Superclean Materials March 12 2010 Main Collaborators A.A. Golubov Twente


  1. Odd frequency pairing in spin-triplet superconductor junctions Yukio Tanaka Nagoya University International Symposium on Physics of New Quantum phases in Superclean Materials March 12 2010

  2. Main Collaborators A.A. Golubov Twente University Y. Asano Hokkaido University S. Kashiwaya AIST (Tsukuba) M. Ueda University of Tokyo T. Yokoyama Tokyo Institute of Technology Y.V. Nazarov Delft University

  3. Impurity scattering effect Tanaka and Golubov, PRL. 98, 037003 (2007) Ballistic Superconductor Normal metal Only s-wave pair Impurity scattering (isotropic) amplitude exists in DN (1)ESE Diffusive (2)OTE Normal metal Superconductor (DN) ESE (Even-frequency spin-singlet even-parity) OTE (Odd-frequency spin-triplet even-parity) Proximity effect in aerogel, Higashitani, Nagato, and Nagai, (2009)

  4. Summary of proximity effect (No spin flip) Interface-induced state Bulk state Sign change Proximity into DN (subdominant) ESE (s,dx2-y2 -wave) No (1) ESE ESE + (OSO) (2) OSO +(ESE) No ESE (d xy -wave) Yes (3) ETO (p x -wave) OTE + (ETO) Yes OTE (4) ETO (p y -wave) ETO + (OTE) No No • ESE (Even-frequency spin-singlet even-parity) • ETO (Even-frequency spin-triplet odd-parity) • OTE (Odd-frequency spin-triplet even-parity) • OSO (Odd-frequency spin-singlet odd-parity) Proximity into DN (Diffusive normal metal) even-parity (s-wave) ○ Odd-parity × Y. Tanaka and Golubov, PRL. 98, 037003 (2007) Y. Tanaka, et al Phys. Rev. Lett. 037005 (2007)

  5. Mid gap Andreev Odd-frequency Cooper pair resonant (bound) state (MARS) 4 Normalized DOS 2 0 –1 0 1   (Sign change of the pair potential at the interface) ー + + ー + ー Interface (surface)

  6. Summary of proximity effect (No spin flip) Interface-induced state Bulk state Sign change Proximity into DN (subdominant) ESE (s,dx2-y2 -wave) No (1) ESE ESE + (OSO) (2) OSO +(ESE) No ESE (d xy -wave) Yes (3) ETO (p x -wave) OTE + (ETO) Yes OTE (4) ETO (p y -wave) ETO + (OTE) No No • ESE (Even-frequency spin-singlet even-parity) • ETO (Even-frequency spin-triplet odd-parity) • OTE (Odd-frequency spin-triplet even-parity) • OSO (Odd-frequency spin-singlet odd-parity) Proximity into DN (Diffusive normal metal) even-parity (s-wave) ○ Odd-parity × Y. Tanaka and Golubov, PRL. 98, 037003 (2007) Y. Tanaka, et al Phys. Rev. Lett. 037005 (2007)

  7. Usadel equation Available for diffusive limit Diffusive limit Angular average Diffusion constant Diffusive normal metal region attached to superconductor Boundary condition available for unconventional superconductors Tanaka et al, PRL 90 167003 (2003), PRB 70 012507 (2004)

  8. Diffusive + Tanaka Golubov PRL 98, 037003 (2007) Normal metal Superconductor We denote simply (DN)  Green’s function in superconductor (ballistic) Green’s function in DN Conventional proximity (even-frequency) Unconventional proximity (odd-frequency) Quasiparticle Green’s function Pair amplitude

  9. Conventional proximity effect  Re f ( ) DN S  Im ( ) f Even frequency spin singlet s-wave (ESE) pair is induced in DN.

  10. Conventional proximity effect in spin-singlet d- wave junction (similar to s-wave)  Re f ( ) DN  Im f ( ) Purely Even frequency s-wave component in DN PRL 98, 037003 (2007)

  11. New type of proximity effect P x -wave case ー +  Re f ( )  DN Im ( ) f Odd frequency spin triplet s-wave (OTE) pair is induced in DN Y.Tanaka, A.A.Golubov, Phys.Rev.Lett. 98 , 037003 (2007)

  12. Density of states in DN Tanaka, Kashiwaya PRB 70 012507 (2004) Conventional proximity effect with Unconventional proximity effect with Even-frequency Cooper pair in DN Odd-frequency Cooper pair in DN Peak(dip) width, Thouless energy

  13. No proximity effect Unconventional proximity effect Odd-frequency pairing at the Odd-frequency pairing at the interface: Odd-parity (can not enter) interface includes s-wave component Peak width, Thouless energy

  14. Local density of state in DN 3 8 a 3 a 6 2 2 b 4 c 1 c 1 2 b c a b 0 0 0 –1 0 1 –1 0 1 –1 0 1

  15. How to detect triplet superconductor MARS (Mid gap Andreev resonance state) can penetrate into DN by proximity effect only for triplet superconductor junctions Y. Tanaka & S. Kashiwaya, PRB 70, 012507 (2004) STS STS MARS MARS ZEP No ZEP Diffusive normal Diffusive normal Triplet superconductor Singlet superconductor Metal (DN) Metal (DN) LDOS in DN has a zero LDOS in DN does not have energy peak a zero energy peak Proximity effect via odd-frequency pairing

  16. Theoretical prediction to detect odd-frequency paring amplitude Asano Tanaka Golubov Kashiwaya, PRL 99, 067005 (2007). Sr 2 RuO 4 Au :I+ Au :I- Au :V+ Au :V- OTE (Odd-frequency spin-triplet even-parity) Kashiwaya, Maeno 2007 ESE (Even-frequency spin-singlet even-parity) OTE proximity ESE proximity (conventional) Zero energy peak No Zero energy peak

  17. Meissner effect Narikiyo and Fukuyama, J. Phys. Soc. Jpn. 58, 4557 (1989) Belzig Bruder PRB 53 5727 (1996)

  18. Temperature dependence of averaged value of local penetration depth 0.02 a purely imaginary number c for spin-triplet junctions d 0 a b –0.02 0 1 Tanaka, et al, PRB 72 , 140503R 2005

  19. Summary (1)For spin-triplet superconductor / diffusive normal metal (DN) junctions, pure odd- frequency pairing is possible in the diffusive normal metal. (2)We can expect anomalous proximity effect with enhanced zero energy density of states. (3)Sr 2 RuO 4 junction is very interesting. Phys. Rev. Lett. 98 037003 (2007) Phys. Rev. Lett. 99 067005 (2007).

  20. ABS F/S Odd-frequency junction pairing Vortex Proximity (interference)

  21. Local density of state in DN 3 3 8 a a 6 2 2 b 4 c 1 c 1 2 b c a b 0 0 0 –1 0 1 –1 0 1 –1 0 1

  22. Ferromagnet (metal)/superconductor junctions All four kinds of pairing is possible in ferromagnet Superconductor Ferromagnet (Eschrig, 2007) ESE s-wave (1) Generation of OSO pairing by broken inversion (translational) symmetry (2) Generation of OTE pairing by broken time reversal symmetry (3) Generation of ETO pairing both in the presence of broken inversion (translational) symmetry and broken time reversal symmetry ESE : Even-frequency spin-Singlet Even-parity ETO : Even-frequency spin-Triplet Odd-parity OSO : Odd-frequency spin-Singlet Odd-parity OTE : Odd-frequency spin-Triplet Even-parity

  23. Odd-frequency Pair amplitude not pair potential ) is generated in ferromagnet junctions Odd frequency spin-triplet s-wave pair spin-singlet s-wave pair _ + Ferromagnet Superconductor Bergeret, Efetov, Volkov, (2001) Eschrig, Buzdin,Golubov, Kadigrobov,Fominov, Radovic… Generation of the odd-frequency pair amplitude in ferromagnet

  24. Josephson current through half metal Eschrig (2008) (1) Spin precession, triplet pairing with m=0 is generated from singlet pairing (2) Spin rotation, triplet pairing with m=1 is generated (3) even-frequency triplet or odd-frequency triplet

  25. Ferromagnet (metal)/superconductor junctions Diffusive Only s-wave pairing Ferromagnet Superconductor state is possible in DF (DF) (1) Weak spin-polarized ferromagnet T. Yokoyama, Y. Tanaka, and A.A. Golubov PRB 75 134510 (2007) (only spin precession) (2) Fully spin-polarized ferromagnet Y.Asano, Y.Tanaka and A.A. Golubov PRL 98, 107002 (2007) Purely odd-frequency equal spin-triplet pairing is possible (spin precession & rotation)

  26. Pair amplitude LDOS (x=0) OTE (x=0) ESE (x=0)         Z 3 Z 3 R / R 1 R / R 0.1 E / 0.1 d b d b Th LDOS at  is enhanced, when the magnitude of the OTE pair amplitude is enhanced. x=0 x=L ESE (Even-frequency spin-singlet even-parity) Ferromagnet S OTE (Odd-frequency spin-triplet even-parity) T. Yokoyama, Y. Tanaka, and A.A. Golubov PRB 75 134510 (2007)

  27. Josephson current in S/ HM/ S Keizer et.al., Nature (‘06) Half metal (HM) : CrO 2 Spin active interface Bergeret et. al., PRL(‘01), Kadigrobov et. al., Europhys Lett.(‘01) Eschrig et. al., PRL(03) Theory in the clean limit Theory in the diffusive limit Aasno Tanaka Golubov, PRL(‘07) Theory in general case Eschrig, Lofwander Nature Physics(08)

  28. Lattice model Furusaki, Physica B(‘92), ( numerical) Asano, PRB(‘01) Advantages SNS, SFS, S/HM/S Parameters V : exchange ex : spin-flip V S (interface) Y.Asano, Y.Tanaka and A.A. Golubov PRL 98, 107002 (2007) Eschrig Lofwander Nature Physics(2008) Braude Nazarov PRL 98 07003 (2007) Takahashi Hikino et al. PRL 99 057003(2007)

  29. Pair amplitude and LDOS 3 1.0 SNS < f 0 > LDOS at j = 37 / n 0 Pairing function / f B S/HM/S 0.5 2 0.0 1 < f  > -0.5 -1.0 -0.5 0.0 0.5 1.0 0  n /  0 0.0 0.5 1.0 E /   Even-frequency spin-singlet s-wave (ESE) V ex =0 V S =0 S/N/S Odd-frequency equal-spin-triplet s-wave (OTE) in S/HF/S Y.Asano, Y.Tanaka and A.A. Golubov PRL 98, 107002 (2007)

  30. Anomalous Josephson effect between odd-frequency superconductor/ even frequency superconductor junctions Y. Tanaka, A. Golubov, S. Kashiwaya, and M. Ueda Phys. Rev. Lett. 99 037005 (2007)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend