numerical shape optimization for compressible flows
play

Numerical shape optimization for compressible flows Praveen. C - PowerPoint PPT Presentation

Numerical shape optimization for compressible flows Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in ICMPDE TIFR-CAM, Bangalore


  1. Numerical shape optimization for compressible flows Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in ICMPDE TIFR-CAM, Bangalore 13–17 August, 2010 Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 1 / 63

  2. Shape optimization framework • Shape is parameterized in terms of x ∈ D ⊂ R d • PDE-constrained minimization min x ∈ D J ( x, u ) s.t. R ( x, u ) = 0 • Solving R = 0 is computationally expensive • d can be large - Curse of dimensionality Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 2 / 63

  3. Navier-Stokes Equations I • In d-dimensions d d ∂U ∂F i ∂G i � � ∂t + = ∂x i ∂x i i =1 i =1 • Conserved quantities and fluxes       ρ ρu i 0 ρu 1 pδ i 1 + ρu 1 u i τ i 1             U = ρu 2 , F i = pδ i 2 + ρu 2 u i , G i = τ i 2             ρu 3 pδ i 3 + ρu 3 u i τ i 3       E ( E + p ) u i τ ij u j − q i ρ = Density ( u 1 , u 2 , u 3 ) = Velocity p = Pressure E = Energy per unit volume τ ij = Viscous stress tensor q i = Heat flux Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 3 / 63

  4. Navier-Stokes Equations II • Ideal gas equation of state � � E − 1 2 ρ | u | 2 p = ( γ − 1) • Constitutive law � ∂u i � + ∂u j − 2 τ ij = ( µ + µ t ) 3( ∇ · u ) δ ij ∂x j ∂x i � µ � ∂T Pr + µ t q i = − Pr t ∂x i • Additional equations, Turbulence models , to determine µ t Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 4 / 63

  5. Quantities of interest • Forces on a solid body � F i = ( − pn i + τ ij n j )d S S • Lift and drag L = F · V ⊥ D = F · V ∞ ∞ • Optimization problem min D s.t. L = W, etc. Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 5 / 63

  6. Finite volume method ∂U ∂t + ∇ · H ( U ) = 0 • Divide Ω into non-overlapping, polygonal, finite volumes Ω i Ω = ∪ i Ω i • Conservation principle on each finite volume � � d U d x + H · n d s = 0 d t Ω i ∂ Ω i • Semi-discrete scheme | Ω i | d U i � d t + H ( U i , U j , n ij ) = 0 j ∈ N ( i ) Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 6 / 63

  7. Classical approach • PDE-constrained problem min x J ( u, x ) s.t. R ( u, x ) = 0 or L ( x, u, v ) = J ( x, u ) + ( v, R ( u, x )) • Need to develop complex adjoint solvers • PDE models not well motivated, e.g., turbulence models min x J h ( u h , x ) s.t. R h ( u h , x ) = 0 • Discrete approach: Automatic Differentiation • Noisy objective functions • Only local optimum Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 7 / 63

  8. Discrete adjoint in presence of shocks 0.8 Automatic Differentiation 0.11 Divided Differences 0.7 0.1 0.6 0.09 0.08 0.5 0.07 d c d /d Mach drag coefficient 0.4 0.06 0.3 0.05 0.2 0.04 0.03 0.1 0.02 0 0.01 -0.1 0 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 Mach-0.83 Mach-0.83 Figure 7: Drag derivatives with respect to Mach number in Figure 6: Drag with respect to Mach number in transonic transonic regime. regime. (Martinelli et al.) Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 8 / 63

  9. Discrete adjoint in presence of shocks 0.045 Naca 256x64 0.038 Naca 128x32 0.04 Naca 64x16 0.036 0.035 0.034 C-lift C-lift 0.03 0.032 0.03 0.025 0.028 0.02 0.026 0.7 0.75 0.8 0.85 0.8 0.81 0.82 0.83 0.84 0.85 Mach Mach 3 3 2 2 d C-lift / d Mach d C-lift / d Mach 1 1 0 0 -1 -1 -2 -2 0.7 0.75 0.8 0.85 0.8 0.81 0.82 0.83 0.84 0.85 Mach Mach Figure 1. Lift coefficient and derivatives against Mach number for a transonic NACA0012 aerofoil on three grids. The bars in the top plots display the derivatives computed using the discrete adjoint. (Dwight et al.) Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 9 / 63

  10. Discrete adjoint: Frozen turbulence 0.2 C-lift 0.14 1 C-lift C-drag C-drag 0.18 Grad - exact Grad - frozen turb 1 0.12 0.16 0.14 0.1 0.5 0.12 0.5 C-drag C-drag 0.08 C-lift C-lift 0.1 0.06 0.08 0 0.06 0 0.04 0.04 0.02 0.02 0 -4 -2 0 2 4 6 8 10 0 5 10 Alpha Alpha Exact adjoint Frozen turb. 0.04 1 d C-drag / d alpha 0.02 C-lift 0.8 0 0.6 -0.02 -0.04 0.4 -4 -2 0 2 4 6 8 10 1 2 3 4 5 6 Alpha Alpha Figure 2. Lift and drag against angle-of-attack for an RAE 2822 aerofoil. Line segments represent gradients computed with a discrete adjoint code, with a full linearization of the turbulence model (black), and a frozen- turbulence approximation (red). (Dwight et al.) Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 10 / 63

  11. Derivative-free methods • Using function values only • Global, stochastic search ◮ Genetic algorithm ◮ Particle swarm method D ⊂ R d min x ∈ D J ( x ) , • Collection of N p solutions at any iteration n P n = { x n 1 , x n 2 , . . . , x n N p } ⊂ D • Solutions evolve according to some rules P n +1 = E ( P n ) Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 11 / 63

  12. Particle swarm optimization • Kennedy and Eberhart (1995) • Modeled on behaviour of animal swarms: ants, bees, birds • Cooperative behaviour of large number of individuals through simple rules • Emergence of swarm intelligence Optimization problem D ⊂ R 2 min x ∈ D J ( x ) , Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 12 / 63

  13. Particle swarm optimization • Kennedy and Eberhart (1995) • Modeled on behaviour of animal swarms: ants, bees, birds • Cooperative behaviour of large number of individuals through simple rules • Emergence of swarm intelligence Optimization problem D ⊂ R 2 min x ∈ D J ( x ) , Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 12 / 63

  14. Particle swarm optimization Particles distributed in design space x i ∈ D, i = 1 , ..., N p X2 X1 Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 13 / 63

  15. Particle swarm optimization Each particle has a velocity v i ∈ R d , i = 1 , ..., N p X2 X1 Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 14 / 63

  16. Particle swarm optimization • Particles have memory ( t = iteration number) Local memory : p t J ( x s i = argmin i ) 0 ≤ s ≤ t Global memory : p t = argmin J ( p t i ) i • Velocity update 2 ⊗ ( p t − x t v t +1 = ωv t i + c 1 r t 1 ⊗ ( p t i − x t + c 2 r t i ) i ) i � �� � � �� � Local Global • Position update x t +1 = x t i + v t +1 i i Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 15 / 63

  17. Surrogate Models Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 16 / 63

  18. Metamodels • Replace min x ∈ D J ( x, u ) s.t. R ( x, u ) = 0 with ˜ min J ( x ) x ∈ D • Model error estimate/indicator σ ( x ) x ∈ D J ρ ( x ) := ˜ min J ( x ) − ρσ ( x ) , ρ ≥ 0 • Local and global search x 0 = argmin J 0 ( x ) x 3 = argmin J 3 ( x ) x ∈ D x ∈ D ⇒ Update ˜ J ( x 0 ) , J ( x 3 ) = J Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 17 / 63

  19. Kriging I Unknown function f : D ⊂ R d → R Given the data as F N = { f 1 , f 2 , . . . , f N } ⊂ R sampled at X N = { x 1 , x 2 , . . . , x N } ⊂ D , infer the function value at a new point x N +1 ∈ D . Treat result of a computer simulation as a fictional gaussian process F N is assumed to be one sample of a multivariate Gaussian process with joint probability density � � − 1 N C − 1 2 F ⊤ p ( F N ) = exp N F N (1) � (2 π ) N det( C N ) where C N is the N × N covariance matrix. Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 18 / 63

  20. Kriging II When adding a new point x N +1 , the resulting vector of function values F N +1 is assumed to be a realization of the ( N + 1)-variable Gaussian process with joint probability density � � − 1 N +1 C − 1 2 F ⊤ p ( F N +1 ) = exp N +1 F N +1 (2) � (2 π ) N +1 det( C N +1 ) Using Baye’s rule we can write the probability density for the unknown function value f N +1 , given the data ( X N , F N ) as � � − ( f N +1 − ˆ f N +1 ) 2 p ( f N +1 | F N ) = p ( F N +1 ) = 1 Z exp 2 σ 2 p ( F N ) f N +1 where ˆ f N +1 = k ⊤ C − 1 σ 2 f N +1 = κ − k ⊤ C − 1 N F N , N k (3) � �� � � �� � Inference Error indicator Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 19 / 63

  21. Kriging III Covariance matrix: Given in terms of a correlation function, C N = [ C mn ], C mn = corr( f m , f n ) = c ( x m , x n ) � � d ( x i − y i ) 2 − 1 � c ( x, y ) = θ 1 exp + θ 2 r i 2 2 i =1 Parameters Θ = ( θ 1 , θ 2 , r 1 , r 2 , . . . , r d ) determined to maximize the likelihood of known data max log( p ( F N )) Θ Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 20 / 63

  22. Kriging: Illustration 12 10 DACE predictor 8 6 12 4 standard error 10 2 of the predictor 8 0 0 2 4 6 8 10 12 6 4 2 0 0 2 4 6 8 10 12 1 1.5 1.5 2 2.5 2.5 3 3.5 3.5 4 4.5 Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 21 / 63

  23. Minimization of 2-D Branin function: Initial database 15 10 5 0 −5 0 5 10 Praveen. C (TIFR-CAM) Shape optimization TIFR-CAM, Aug 2010 22 / 63

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend