numerical relativity simulations for gw astrophysics
play

Numerical relativity simulations for GW Astrophysics Harald - PowerPoint PPT Presentation

Numerical relativity simulations for GW Astrophysics Harald Pfeiffer AEI Program Advances in Computational Relativity ICERM, Oct 7, 2020 Image: Nils Fischer (AEI) GW150914 Abbott+ PRL 12016 Waveform knowledge essential for GW astronomy


  1. Numerical relativity simulations for GW Astrophysics Harald Pfeiffer AEI Program Advances in Computational Relativity ICERM, Oct 7, 2020 Image: Nils Fischer (AEI)

  2. “GW150914” Abbott+ PRL 12016 Waveform knowledge essential for GW astronomy Parameter estimation Detection by matched filtering LIGO+Virgo, PRX 2016 (1606.04856) Validation Testing GR LIGO+Virgo, PRL 2017 (1706.01812) 2 H. Pfeiffer LIGO & Virgo: CQG 2017 (1611.07531)

  3. 
 In future, need higher accuracy for more diverse systems LISA 3G & LISA: expected SNRs q = 1…10 − 6 among sources: BBH needed accuracy ~ 1/SNR among science targets: 
 eccentricity measurement to δ e < 0.001 LISA proposal 2017 GWIC, https://gwic.ligo.org/3Gsubcomm/documents/science-case.pdf 3 H. Pfeiffer

  4. Methods for modeling BBH Inspiral Merger Ringdown frequency 4 H. Pfeiffer

  5. Methods for modeling BBH Inspiral Merger Ringdown 0 mass-ratio q 1 post-Newtonian theory BH perturbation 
 (and PM & EOB) theory , 
 perturbation theory in 1/q y t i c … i r t frequency n , n e i c p c s e 4 H. Pfeiffer

  6. Methods for modeling BBH Inspiral Merger Ringdown 0 mass-ratio q 1 post-Newtonian theory BH perturbation 
 (and PM & EOB) theory , 
 perturbation theory in 1/q y t i c … i r t frequency n , n e i c p c s e 4 H. Pfeiffer

  7. Methods for modeling BBH Inspiral Merger Ringdown 0 mass-ratio q 1 post-Newtonian LISA theory BH perturbation 
 (and PM & EOB) x theory , 
 perturbation theory in 1/q y t i c … i r t frequency n , n e i c p c s e 4 H. Pfeiffer

  8. Role of NR • Solution of GR 
 for late inspiral + merger • Provide error estimates • Determine regions of validity 
 of perturbative methods - all available perturbation 
 orders needed for science - No extra order for error estimate • Validate GW data-analysis • Black holes, neutron stars 
 … and exotic objects, alternative theories 5 H. Pfeiffer

  9. Role of NR • Solution of GR 
 for late inspiral + merger • Provide error estimates • Determine regions of validity 
 of perturbative methods - all available perturbation 
 orders needed for science - No extra order for error estimate • Validate GW data-analysis • Black holes, neutron stars 
 … and exotic objects, alternative theories 5 H. Pfeiffer

  10. 
 
 
 
 
 
 
 Solving Einstein Equations - Basic idea • Goal: Space-time metric 
 g ab satisfying 
 • Split spacetime into 
 space and time • Evolution equations cf. Maxwell’s equations 
 • Constraints 
 6 H. Pfeiffer

  11. Why is this hard? • ADM equations ill-posed ; rewrite 
 as hyperbolic system • Singularities inside black holes • Constraints difficult to preserve • Coordinate freedom - How to choose coordinates for a 
 space-time one does not know yet? • Many common numerical challenges - 20-50 variables - 10,000 FLOP / grid-point / time-step - Different length scales, high accuracy requirements 7 H. Pfeiffer

  12. The very beginning 8 H. Pfeiffer

  13. The first 50 Years of numerical relativity for BBH 
 2007- 
 2005 Pretorius 
 2000-04 
 1962 ADM 
 1992,3 
 Ajith, AEI, Jena 
 inspiral-merger- 
 AEI / UTB-NASA 
 3+1 formulation Choptuik; 1999-00 
 2011 
 ringdown (IMR) 
 phenom GW models revive crashing Abrahams+Evans 
 w/ harmonic AEI/PSU 
 Lousto ea 
 codes ( Lazarus) critical phenomena 2009- 
 q=100 grazing collisions 2005-06 
 1964 
 UMD, SXS 
 2014- 
 Campanelli+; Baker+ 
 1997 
 ~2000 Choptuik; 
 EOB GW models Hahn-Lindquist 
 IMR w/ BSSN & 
 precessing 
 Brandt- Schnetter;Brügmann 
 moving punctures 2 wormholes 2011 
 GW models Brügmann 
 mesh refinement Schmidt ea; 2015 
 2006-08 
 1984 
 puncture data 2005 
 Boyle ea 
 Szilagyi ea 
 Scheel..HP+ SXS 
 Unruh 
 1994-98 
 Gundlach ea 
 Radiation aligned 175 orbits IMR w/ spectral excision BBH Grand Challenge frame constraint damping 2015 1964 ~1999 ~2005 1975-77 
 2006,07 
 1999 
 2000-02 
 2011 
 2008 
 1994 Cook 
 Smarr-Eppley 
 BSSN 
 Baker ea; 
 Alcubierre 
 Lovelace ea 
 all of NR 
 Bowen-York 
 head-on evolution 
 Gonzalez ea 
 S/M 2 =0.97 gauge conditions NINJA initial data collision 
 system 2004 
 non-spinning BBH 2011- 
 1994-95 
 1979 York 
 Brügmann ea 
 kicks 1999 Y ork 
 Le Tiec ea NCSA-WashU 
 2009-11 
 kinematics and one orbit 2007 SXS 
 conformal thin self-force studies dynamics of GR improved 
 Bishop, ... 
 sandwich ID 2003-08 
 PN-NR 
 head-on collision 2013 
 1989-95 
 Cauchy 
 comparison Cook, Pfeiffer ea 
 GaTech; SXS characteristic Bona-Masso 
 improved ID extraction Precessing 2007-11 
 modified ADM, 1999-2005 York, parameter 2000 Ashtekar 
 (hyperbolicity) 2010 
 RIT; Jena; AEI;… 
 Cornell, Caltech, LSU 
 studies isolated horizons Courtesy Carlos Lousto, BBH superkicks Bernuzzi ea 
 hyperbolic formulations updated by HP C4z 9 H. Pfeiffer

  14. 2005: First working BBH inspirals Campanelli+06 Baker+06 Pretorius 05 Important early result: Simplicity of merger Continuous transition 
 Baker+07 inspiral → ringdown 10 H. Pfeiffer

  15. Two approaches towards BBH simulations “BSSN & Moving punctures” “generalized harmonic & spectral” LazEv, Maya, BAM, Goddard SpEC (SXS collaboration) Puncture initial-data Quasi-equilibrium excision data (but see Zlochower+ 17) χ ≲ 0.9 χ ≲ 0.999 BSSN or CC4z Generalized-Harmonic Evolution System Moving puncture BH excision mergers “easy” mergers di ffi cult Sommerfeld outer BC Constraint preserving, minimally reflective outer BC 4th to 8th order finite-di ff erence Spectral methods BHs advect through static grids Moving grid long, phase-accurate inspirals GW extrapolation GW extrapolation & COM correction (Healy,Lousto ’20 for LazEv COM correction) Cauchy-characteristic extraction accurate m=0 modes, GW memory 11 H. Pfeiffer

  16. Spectral Einstein Code (SpEC) Simulating eXtreme Spacetimes collaboration http://www.black-holes.org/SpEC.html 12 H. Pfeiffer

  17. 
 
 
 
 
 Spectral methods Spectral • Expand in basis-functions, 
 solve for coefficients 
 N � u ( x, t ) = u ( t ) k Φ k ( x ) ˜ k =1 • Compute derivatives exactly 
 N X u 0 ( x, t ) = u ( t ) k Φ 0 ˜ k ( x ) Finite differences k =1 • Compute nonlinearities in 
 physical space • For smooth problems, exponential convergence 13 H. Pfeiffer

  18. Domain-decomposition • Many sub-domains, 
 each with own 
 basis-functions - Spheres - Blocks - Cylinders • Advantages: - Excision of 
 BH singularities - Adaptive 
 Resolution - Parallelization http://www.black-holes.org/SpEC.html 14 H. Pfeiffer

  19. Domain-decomposition • Many sub-domains, 
 each with own 
 basis-functions - Spheres - Blocks - Cylinders • Advantages: - Excision of 
 BH singularities - Adaptive 
 Resolution - Parallelization http://www.black-holes.org/SpEC.html 14 H. Pfeiffer

  20. Domain-decomposition • Many sub-domains, 
 each with own 
 basis-functions - Spheres - Blocks - Cylinders • Advantages: - Excision of 
 BH singularities - Adaptive 
 Resolution - Parallelization http://www.black-holes.org/SpEC.html 14 H. Pfeiffer

  21. Domain-decomposition • Many sub-domains, 
 each with own 
 basis-functions - Spheres - Blocks - Cylinders • Advantages: - Excision of 
 BH singularities - Adaptive 
 Resolution - Parallelization http://www.black-holes.org/SpEC.html 14 H. Pfeiffer

  22. Einstein constraints: Formalism g = ψ 4 ˜ g R + (tr K ) 2 � K 2 = 0 ˜ r 2 ψ = . . . Lichnerowicz 44 r · ( K � g tr K ) = 0 ˜ σ ˜ r · ( 1 L V ) = . . . ˜ coupled nonlinear 
 elliptic PDEs in 3D K = 1 3 tr K g + A conformal scaling A ˜ A A = ψ − 10 ˜ A conformal 
 TT TT decomp. decomp. conformal scaling A TT + 1 A = A TT + 1 A = ˜ ˜ σ (˜ L V ) σ ( L V ) A TT = ψ − 10 ˜ ˜ A TT σ = ψ 6 ˜ σ Hamiltonian picture ≡ Lagrangian picture York(+) 72;74;99, HP ,York 03 15 H. Pfeiffer

  23. Applied to binary black holes ˜ r 2 ψ = . . . • Asymptotics/boundary conditions ˜ N ˜ r · ( 1 Brandt, Brügmann 97; Cook,HP 04 L β )= . . . ˜ • Elliptic solver r 2 ˜ ˜ N = . . . HP+ 02, Ansorg 04 • Spins > 0.9 • Control eccentricity Lovelace..HP+ 08 1 E rot / E rot, max 0.8 0.6 w/ conformal flatness 0.4 0.9995 0.2 0 0 0.25 0.5 0.75 1 HP+ 05; Buonanno..HP+ 08 2 S/M Chatziiouannou, HP+ (in prep) 16 H. Pfeiffer

  24. Einstein Evolution Equations 17 H. Pfeiffer

  25. BH Excision • Excise inside BH horizons • Domain-decomposition 
 follows BHs continuously , 
 conforms to shape of AH al., 2006 t t Horizon Horizon Horizon Horizon Outside Outside Outside Outside Horizon Horizon Horizon Horizon x x x x Scheel, HP+ 08, Szilagyi+ 08, Hemberger+ 13 18 H. Pfeiffer

  26. Outer boundary • In SpEC: - Constraint preserving - Minimally reflective 
 Lindblom, Rinne+ 06 • Causally connected for 
 Δ GW-phase (radians) long simulations Buchman, HP , Scheel, Szilagyi, 2012 19 H. Pfeiffer

  27. Accuracy of SpEC GW precision data Scheel,HP+ 09 20 H. Pfeiffer

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend