numerical methods for non standard fractional operators
play

Numerical methods for non-standard fractional operators in the - PowerPoint PPT Presentation

Numerical methods for non-standard fractional operators in the simulation of dielectric materials Roberto Garrappa Department of Mathematics - University of Bari - Italy roberto.garrappa@uniba.it Fractional PDEs: Theory, Algorithms and


  1. Numerical methods for non-standard fractional operators in the simulation of dielectric materials Roberto Garrappa Department of Mathematics - University of Bari - Italy roberto.garrappa@uniba.it Fractional PDEs: Theory, Algorithms and Applications ICERM - Providence, June 18–22, 2018 R.Garrappa (Univ. of Bari - Italy) Non-standard fractional operators ICERM 2018 1 / 25

  2. Outline Numerical methods for non-standard fractional operators in the simulation of dielectric materials The problem 1 The operator 2 The numerical method 3 Financial support: EU Cost Action 15225 - Fractional Systems Istituto Nazionale di Alta Matematica (INdAM-GNCS) R.Garrappa (Univ. of Bari - Italy) Non-standard fractional operators ICERM 2018 2 / 25

  3. Maxwell’s equations: Standard Maxwell’s equations:  ∂  ∇ × H = ǫ 0 Ampere’s law ∂ t E  ∂ H  ∇ × E = − µ 0 Faraday’s law  ∂ t E : electric field H : magnetic field R.Garrappa (Univ. of Bari - Italy) Non-standard fractional operators ICERM 2018 3 / 25

  4. Maxwell’s equations: Standard Maxwell’s equations:  ∂  ∇ × H = ǫ 0 Ampere’s law ∂ t E  ∂ H  ∇ × E = − µ 0 Faraday’s law  ∂ t E : electric field H : magnetic field Real world applications design of data and energy storage devices design of antennas medical diagnostic (MRI), cancer therapy, ... R.Garrappa (Univ. of Bari - Italy) Non-standard fractional operators ICERM 2018 3 / 25

  5. Maxwell’s equations: Standard Maxwell’s equations with polarization:  ∂ t E + ∂ ∂  ∇ × H = ǫ 0 Ampere’s law ∂ t P  ∂ H  ∇ × E = − µ 0 Faraday’s law  ∂ t E : electric field H : magnetic field P : polarization R.Garrappa (Univ. of Bari - Italy) Non-standard fractional operators ICERM 2018 3 / 25

  6. Maxwell’s equations: Standard Maxwell’s equations with polarization:  ∂ t E + ∂ ∂  ∇ × H = ǫ 0 Ampere’s law ∂ t P  ∂ H  ∇ × E = − µ 0 Faraday’s law  ∂ t E : electric field H : magnetic field P : polarization The complex susceptibility The polarization P depends on the electric field E (constitutive law) ˆ χ ( ω ) ˆ P = ε 0 ˆ E χ ( ω ) is a specific feature of the matter (or system) ˆ Simplified notation (just for easy of presentation) R.Garrappa (Univ. of Bari - Italy) Non-standard fractional operators ICERM 2018 3 / 25

  7. Determining the complex susceptibility ˆ χ ( ω ) χ ′ ( ω ) − i ˆ χ ′′ ( ω ) ? How to derive ˆ χ ( ω ) = ˆ R.Garrappa (Univ. of Bari - Italy) Non-standard fractional operators ICERM 2018 4 / 25

  8. Determining the complex susceptibility ˆ χ ( ω ) χ ′ ( ω ) − i ˆ χ ′′ ( ω ) ? How to derive ˆ χ ( ω ) = ˆ Experimental data (in the frequency domain): ˆ χ ( ω ) ˆ P = ˆ E 0 Exper. data 10 −1 10 −2 χ ′′ ( ω ) 10 ˆ −3 10 −4 10 0 2 4 6 10 10 10 10 frequency ω Match experimental data into a mathematical model R.Garrappa (Univ. of Bari - Italy) Non-standard fractional operators ICERM 2018 4 / 25

  9. Determining the complex susceptibility ˆ χ ( ω ) 0 10 Exper. data Debye model −1 10 −2 χ ′′ ( ω ) 10 ˆ −3 10 −4 10 0 2 4 6 10 10 10 10 frequency ω 1 The Debye model: χ ( ω ) = ˆ (standard materials) 1 + i ωτ τ d Ordinary differential equation: dt P ( t ) + P ( t ) = E ( t ) R.Garrappa (Univ. of Bari - Italy) Non-standard fractional operators ICERM 2018 5 / 25

  10. Determining the complex susceptibility ˆ χ ( ω ) 0 10 Exper. data −1 10 −2 χ ′′ ( ω ) 10 ˆ −3 10 −4 10 0 2 4 6 10 10 10 10 frequency ω Materials with anomalous dielectric properties: amorphous polymers complex systems (biological tissues) R.Garrappa (Univ. of Bari - Italy) Non-standard fractional operators ICERM 2018 5 / 25

  11. Determining the complex susceptibility ˆ χ ( ω ) 0 10 Exper. data Debye model −1 10 −2 χ ′′ ( ω ) 10 ˆ −3 10 −4 10 0 2 4 6 10 10 10 10 frequency ω Debye model not satisfactory R.Garrappa (Univ. of Bari - Italy) Non-standard fractional operators ICERM 2018 5 / 25

  12. Determining the complex susceptibility ˆ χ ( ω ) 0 10 Exper. data Debye model C−C model −1 10 −2 χ ′′ ( ω ) 10 ˆ −3 10 −4 10 0 2 4 6 10 10 10 10 frequency ω 1 The Cole-Cole model: χ ( ω ) = ˆ 0 < α < 1 1 + ( i ωτ ) α τ α d α Fractional differential equation: dt α P ( t ) + P ( t ) = E ( t ) Only partially satisfactory R.Garrappa (Univ. of Bari - Italy) Non-standard fractional operators ICERM 2018 5 / 25

  13. Determining the complex susceptibility ˆ χ ( ω ) 0 10 Exper. data Debye model C−C model −1 H−N model 10 −2 χ ′′ ( ω ) 10 ˆ −3 10 −4 10 0 2 4 6 10 10 10 10 frequency ω 1 The Havriliak-Negami model: χ ( ω ) = ˆ 0 < α, αγ ≤ 1 � 1 + ( i ωτ ) α � γ Better matching thanks to three parameters α , γ and τ S. Havriliak and S. Negami “A complex plane representation of dielectric and mechanical relaxation processes in some polymers”. In: Polymer (1967) R.Garrappa (Univ. of Bari - Italy) Non-standard fractional operators ICERM 2018 5 / 25

  14. Determining the complex susceptibility ˆ χ ( ω ) 0 10 Exper. data Debye model C−C model −1 H−N model 10 −2 χ ′′ ( ω ) 10 ˆ −3 10 −4 10 0 2 4 6 10 10 10 10 frequency ω 1 The Havriliak-Negami model: χ ( ω ) = ˆ 0 < α, αγ < 1 � 1 + ( i ωτ ) α � γ � � γ 1 + τ α d α Fractional pseudo-differential equation: P ( t ) = E ( t ) ? dt α R.Garrappa (Univ. of Bari - Italy) Non-standard fractional operators ICERM 2018 5 / 25

  15. Other models for complex susceptibility ˆ χ ( ω ) Modified Havriliak-Negami or JWS (Jurlewicz, Weron and Stanislavsky) 1 � − α � γ = 1 − ( i τ ⋆ ω ) αγ χ HN ( i ω ) χ JWS ( i ω ) = 1 − ˆ � � 1 + i τ ⋆ ω EW: Excess wing (Hilfer, Nigmatullin and others) 1 + ( τ 2 i ω ) α χ EW ( i ω ) = ˆ 1 + ( τ 2 i ω ) α + τ 1 i ω . Multichannel excess wing (Hilfer) 1 ˆ ξ ( s ) = � n � − 1 � ( i ωτ k ) − α k 1 + k =1 This talk focuses on the Havriliak-Negami model Garrappa R., Mainardi F. and Maione G., “Models of dielectric relaxation based on completely monotone functions”. In: Frac. Calc. Appl. Anal. 19(5) (2016) R.Garrappa (Univ. of Bari - Italy) Non-standard fractional operators ICERM 2018 6 / 25

  16. Dealing with the Havriliak-Negami model 1 ˆ (( i ωτ ) α + 1) γ ˆ P ( ω ) = E ( ω ) Few contributions on simulation of this constitutive law: C.S.Antonopoulos, N.V.Kantartzis, I.T.Rekanos “FDTD Method for Wave Propagation in Havriliak-Negami Media Based on Fractional Derivative Approximation”. In: IEEE Trans Magn. 53(6) (2017) P.Bia et al. “A novel FDTD formulation based on fractional derivatives for dispersive Havriliak–Negami media”. In: Signal Processing , 107 (2015) 312–318 M.F.Causley, P.G.Petropoulos, “On the Time-Domain Response of Havriliak-Negami Dielectrics”. In: IEEE Trans. Antennas Propag. , 61(6) (2013) 3182–3189 M.F.Causley, P.G.Petropoulos, and S. Jiang “Incorporating the Havriliak-Negami dielectric model in the FD-TD method”. In: J. Comput. Phys. , 230 (2011), 3884–3899. Main problems: Define time-domain operator for HN Discretize the operator for simulations R.Garrappa (Univ. of Bari - Italy) Non-standard fractional operators ICERM 2018 7 / 25

  17. Operators in the time domain 1 � � γ P ( t ) = E ( t ) ˆ (( i ωτ ) α + 1) γ ˆ τ α 0 D α P ( ω ) = E ( ω ) ⇐ ⇒ t + 1 ??? � � γ ? τ α 0 D α How to define the fractional pseudo-differential operator t + 1 R.Garrappa (Univ. of Bari - Italy) Non-standard fractional operators ICERM 2018 8 / 25

  18. Operators in the time domain 1 � � γ P ( t ) = E ( t ) ˆ (( i ωτ ) α + 1) γ ˆ τ α 0 D α P ( ω ) = E ( ω ) ⇐ ⇒ t + 1 ??? � � γ ? τ α 0 D α How to define the fractional pseudo-differential operator t + 1 Combination of fractional operators � t � − t � � � γ = exp � 0 D αγ τ α 0 D α ατ α 0 D 1 − α · τ αγ ατ α 0 D 1 − α t + 1 · exp t t t Useful for theoretical investigations R.R.Nigmatullin and Y.E.Ryabov “Cole–Davidson dielectric relaxation as a self–similar relaxation process”. In: Physics of the Solid State 39.1 (1997) R.Garrappa (Univ. of Bari - Italy) Non-standard fractional operators ICERM 2018 8 / 25

  19. Operators in the time domain 1 � � γ P ( t ) = E ( t ) ˆ (( i ωτ ) α + 1) γ ˆ τ α 0 D α P ( ω ) = E ( ω ) ⇐ ⇒ t + 1 ??? � � γ ? τ α 0 D α How to define the fractional pseudo-differential operator t + 1 Expansion in infinite series ∞ � γ � � γ = � � 0 D α ( γ − k ) τ α 0 D α τ α ( γ − k ) t + 1 t k k =0 No satisfactory for error control V.Novikov et al. “Anomalous relaxation in dielectrics. Equations with fractional derivatives”. In: Mater. Sci. Poland 23.4 (2005) P.Bia et al. “A novel FDTD formulation based on fractional derivatives for dispersive Havriliak–Negami media”. In: Signal Processing , 107 (2015) 312–318 R.Garrappa (Univ. of Bari - Italy) Non-standard fractional operators ICERM 2018 8 / 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend