numerical analysis i numerical differentiation and
play

Numerical Analysis I Numerical Differentiation and Integration - PowerPoint PPT Presentation

Numerical Analysis I Numerical Differentiation and Integration Instructor: Wei-Cheng Wang 1 Department of Mathematics National TsingHua University Fall 2010 1These slides are based on Prof. Tsung-Ming Huang(NTNU)s original slides Wei-Cheng


  1. Numerical Analysis I Numerical Differentiation and Integration Instructor: Wei-Cheng Wang 1 Department of Mathematics National TsingHua University Fall 2010 1These slides are based on Prof. Tsung-Ming Huang(NTNU)’s original slides Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2010 1 / 66

  2. Outline 1 Numerical Differentiation 2 Richardson Extrapolation Method 3 Elements of Numerical Integration 4 Composite Numerical Integration 5 Gaussian Quadrature Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2010 2 / 66

  3. Numerical Differentiation f ( x 0 + h ) − f ( x 0 ) f ′ ( x 0 ) = lim . h h → 0 Question How accurate is f ( x 0 + h ) − f ( x 0 ) ? h Suppose a given function f has continuous first derivative and f ′′ exists. From Taylor’s theorem f ( x + h ) = f ( x ) + f ′ ( x ) h + 1 2 f ′′ ( ξ ) h 2 , where ξ is between x and x + h , one has f ′ ( x ) = f ( x + h ) − f ( x ) − h 2 f ′′ ( ξ ) = f ( x + h ) − f ( x ) + O ( h ) . h h Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2010 3 / 66

  4. Hence it is reasonable to use the approximation f ′ ( x ) ≈ f ( x + h ) − f ( x ) h which is called forward finite difference, and the error involved is | e | = h 2 | f ′′ ( ξ ) | ≤ h t ∈ ( x,x + h ) | f ′′ ( t ) | . max 2 Similarly one can derive the backward finite difference approximation f ′ ( x ) ≈ f ( x ) − f ( x − h ) (1) h which has the same order of truncation error as the forward finite difference scheme. Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2010 4 / 66

  5. The forward difference is an O ( h ) scheme. An O ( h 2 ) scheme can also be derived from the Taylor’s theorem f ( x ) + f ′ ( x ) h + 1 2 f ′′ ( x ) h 2 + 1 6 f ′′′ ( ξ 1 ) h 3 f ( x + h ) = f ( x ) − f ′ ( x ) h + 1 2 f ′′ ( x ) h 2 − 1 6 f ′′′ ( ξ 2 ) h 3 , f ( x − h ) = where ξ 1 is between x and x + h and ξ 2 is between x and x − h . Hence f ( x + h ) − f ( x − h ) = 2 f ′ ( x ) h + 1 6[ f ′′′ ( ξ 1 ) + f ′′′ ( ξ 2 )] h 3 and f ′ ( x ) = f ( x + h ) − f ( x − h ) − 1 12[ f ′′′ ( ξ 1 ) + f ′′′ ( ξ 2 )] h 2 2 h Let z ∈ [ x − h,x + h ] f ′′′ ( z ) z ∈ [ x − h,x + h ] f ′′′ ( z ) . M = max and m = min Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2010 5 / 66

  6. If f ′′′ is continuous on [ x − h, x + h ], then by the intermediate value theorem, there exists ξ ∈ [ x − h, x + h ] such that f ′′′ ( ξ ) = 1 2[ f ′′′ ( ξ 1 ) + f ′′′ ( ξ 2 )] . Hence f ′ ( x ) = f ( x + h ) − f ( x − h ) − 1 6 f ′′′ ( ξ ) h 2 = f ( x + h ) − f ( x − h ) + O ( h 2 ) . 2 h 2 h This is called center difference approximation and the truncation error is | e | = h 2 6 f ′′′ ( ξ ) Similarly, we can derive an O ( h 2 ) scheme from Taylor’s theorem for f ′′ ( x ) f ′′ ( x ) = f ( x + h ) − 2 f ( x ) + f ( x − h ) − 1 12 f (4) ( ξ ) h 2 , h 2 where ξ is between x − h and x + h . Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2010 6 / 66

  7. Polynomial Interpolation Method Suppose that ( x 0 , f ( x 0 )), ( x 1 , f ( x 1 )) · · · , ( x n , f ( x n )) have been given, we apply the Lagrange polynomial interpolation scheme to derive n � P ( x ) = f ( x i ) L i ( x ) , i =0 where n x − x j � L i ( x ) = . x i − x j j =0 ,j � = i Since f ( x ) can be written as n 1 � ( n + 1)! f ( n +1) ( ξ x ) w ( x ) , f ( x ) = f ( x i ) L ( x ) + i =0 where n � w ( x ) = ( x − x j ) , j =0 Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2010 7 / 66

  8. we have, 1 f ′ ( x ) � nf ( x i ) L ′ ( n + 1)! f ( n +1) ( ξ x ) w ′ ( x ) = i ( x ) + i =0 ( n + 1)! w ( x ) d 1 dxf ( n +1) ( ξ x ) . + Note that n n w ′ ( x ) = � � ( x − x i ) . j =0 i =0 ,i � = j Hence a reasonable approximation for the first derivative of f is n f ′ ( x ) ≈ � f ( x i ) L ′ i ( x ) . i =0 When x = x k for some 0 ≤ k ≤ n , n � w ′ ( x k ) = w ( x k ) = 0 and ( x k − x i ) . i =0 ,i � = k Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2010 8 / 66

  9. Hence n n 1 � ( n + 1)! f ( n +1) ( ξ x ) � f ′ ( x k ) = f ( x i ) L ′ i ( x k ) + ( x k − x i ) , (2) i =0 i =0 ,i � = k which is called an ( n + 1)-point formula to approximate f ′ ( x ). • Three Point Formulas Since ( x − x 1 )( x − x 2 ) L 0 ( x ) = ( x 0 − x 1 )( x 0 − x 2 ) we have 2 x − x 1 − x 2 L ′ 0 ( x ) = ( x 0 − x 1 )( x 0 − x 2 ) . Similarly, 2 x − x 0 − x 2 2 x − x 0 − x 1 L ′ ( x 1 − x 0 )( x 1 − x 2 ) and L ′ 1 ( x ) = 2 ( x ) = ( x 2 − x 0 )( x 2 − x 1 ) . Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2010 9 / 66

  10. Hence � 2 x j − x 1 − x 2 � � 2 x j − x 0 − x 2 � f ′ ( x j ) = f ( x 0 ) + f ( x 1 ) ( x 0 − x 1 )( x 0 − x 2 ) ( x 1 − x 0 )( x 1 − x 2 ) 2 � 2 x j − x 0 − x 1 � + 1 � 6 f (3) ( ξ j ) + f ( x 2 ) ( x j − x k ) , ( x 2 − x 0 )( x 2 − x 1 ) k =0 ,k � = j for each j = 0 , 1 , 2. Assume that x 1 = x 0 + h and x 2 = x 0 + 2 h, for some h � = 0 . Then + h 2 1 � − 3 2 f ( x 0 ) + 2 f ( x 1 ) − 1 � f ′ ( x 0 ) 3 f (3) ( ξ 0 ) , = 2 f ( x 2 ) h − h 2 1 � − 1 2 f ( x 0 ) + 1 � f ′ ( x 1 ) 6 f (3) ( ξ 1 ) , = 2 f ( x 2 ) h + h 2 1 � 1 2 f ( x 0 ) − 2 f ( x 1 ) + 3 � f ′ ( x 2 ) 3 f (3) ( ξ 2 ) . = 2 f ( x 2 ) h Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2010 10 / 66

  11. That is + h 2 � � 1 − 3 2 f ( x 0 ) + 2 f ( x 0 + h ) − 1 f ′ ( x 0 ) 3 f (3) ( ξ 0 ) , = 2 f ( x 0 + 2 h ) h − h 2 1 � − 1 2 f ( x 0 ) + 1 � f ′ ( x 0 + h ) 6 f (3) ( ξ 1 ) , = 2 f ( x 0 + 2 h ) (3) h + h 2 1 � 1 2 f ( x 0 ) − 2 f ( x 0 + h ) + 3 � 3 f (3) ( ξ 2 ) . f ′ ( x 0 + 2 h ) = 2 f ( x 0 + 2 h ) (4) h Using the variable substitution x 0 for x 0 + h and x 0 + 2 h in (3) and (4), respectively, we have 2 h [ − 3 f ( x 0 ) + 4 f ( x 0 + h ) − f ( x 0 + 2 h )] + h 2 1 3 f (3) ( ξ 0 ) , (5) f ′ ( x 0 ) = 2 h [ − f ( x 0 − h ) + f ( x 0 + h )] − h 2 1 6 f (3) ( ξ 1 ) , f ′ ( x 0 ) = 2 h [ f ( x 0 − 2 h ) − 4 f ( x 0 − h ) + 3 f ( x 0 )] + h 2 1 3 f (3) ( ξ 2 ) . f ′ ( x 0 ) = (6) Note that (6) can be obtained from (5) by replacing h with − h . Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2010 11 / 66

  12. • Five-point Formulas 1 f ′ ( x 0 ) = 12 h [ f ( x 0 − 2 h ) − 8 f ( x 0 − h ) + 8 f ( x 0 + h ) − f ( x 0 + 2 h )] h 4 30 f (5) ( ξ ) , + where ξ ∈ ( x 0 − 2 h, x 0 + 2 h ) and 1 f ′ ( x 0 ) = 12 h [ − 25 f ( x 0 ) + 48 f ( x 0 + h ) − 36 f ( x 0 + 2 h ) 16 f ( x 0 + 3 h ) − 3 f ( x 0 + 4 h )] + h 4 5 f (5) ( ξ ) , + where ξ ∈ ( x 0 , x 0 + 4 h ). Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2010 12 / 66

  13. Round-off Error Consider 2 h [ − f ( x 0 − h ) + f ( x 0 + h )] − h 2 1 6 f (3) ( ξ 1 ) , f ′ ( x 0 ) = where h 2 6 f (3) ( ξ 1 ) is called truncation error. Let ˜ f ( x 0 + h ) and ˜ f ( x 0 − h ) be the computed values of f ( x 0 + h ) and f ( x 0 − h ), respectively. Then f ( x 0 + h ) = ˜ f ( x 0 + h ) + e ( x 0 + h ) and f ( x 0 − h ) = ˜ f ( x 0 − h ) + e ( x 0 − h ) . Therefore, the total error in the approximation f ( x 0 + h ) − ˜ ˜ − h 2 f ( x 0 − h ) = e ( x 0 + h ) − e ( x 0 − h ) f ′ ( x 0 ) − 6 f (3) ( ξ 1 ) 2 h 2 h is due in part to round-off error and in part to truncation error. Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2010 13 / 66

  14. Assume that | e ( x 0 ± h ) | ≤ ε and | f (3) ( ξ 1 ) | ≤ M. Then � � f ( x 0 + h ) − ˜ ˜ h + h 2 f ( x 0 − h ) � ≤ ε � � � f ′ ( x 0 ) − 6 M ≡ e ( h ) . � � 2 h � � � 3 Note that e ( h ) attains its minimum at h = 3 ε/M . In double precision arithmetics, for example, ε ≈ | f ( x 0 ± h ) | × 10 − 16 . The √ 3 Mε 2 ) = O (10 − 10 ). minimum is O ( Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2010 14 / 66

  15. Richardson’s Extrapolation Suppose ∀ h � = 0 we have a formula N 1 ( h ) that approximates an unknown value M M − N 1 ( h ) = K 1 h + K 2 h 2 + K 3 h 3 + · · · , (7) for some unknown constants K 1 , K 2 , K 3 , . . . . If K 1 � = 0, then the truncation error is O ( h ). For example, h 2 − f (4) ( x ) = − f ′′ ( x ) h − f ′′′ ( x ) f ′ ( x ) − f ( x + h ) − f ( x ) h 3 − · · · . h 2! 3! 4! Goal Find an easy way to produce formulas with a higher-order truncation error. Replacing h in (7) by h/ 2, we have h 2 h 3 � h � h M = N 1 + K 1 2 + K 2 4 + K 3 8 + · · · . (8) 2 Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2010 15 / 66

  16. Subtracting (7) with twice (8), we get M = N 2 ( h ) − K 2 2 h 2 − 3 K 3 4 h 3 − · · · , (9) where � h � � h � � � h � � N 2 ( h ) = 2 N 1 − N 1 ( h ) = N 1 + N 1 − N 1 ( h ) , 2 2 2 which is an O ( h 2 ) approximation formula. Replacing h in (9) by h/ 2, we get � h � − K 2 8 h 2 − 3 K 3 32 h 3 − · · · . M = N 2 (10) 2 Subtracting (9) from 4 times (10) gives � h � − N 2 ( h ) + 3 K 3 8 h 3 + · · · , 3 M = 4 N 2 2 which implies that � � h � + N 2 ( h/ 2) − N 2 ( h ) � + K 3 8 h 3 + · · · ≡ N 3 ( h ) + K 3 8 h 3 + · · · M = N 2 2 3 Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2010 16 / 66

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend