nuclear structure and reactions with quantum computers ii
play

Nuclear structure (and reactions) with Quantum Computers - II - PowerPoint PPT Presentation

Nuclear structure (and reactions) with Quantum Computers - II Alessandro Roggero figure credit: JLAB collab. figure credit: IBM QC and QIS for NP JLAB 17 March, 2020 Quantum phase estimation in one slide GOAL: compute eigenvalue with


  1. Nuclear structure (and reactions) with Quantum Computers - II Alessandro Roggero figure credit: JLAB collab. figure credit: IBM QC and QIS for NP JLAB – 17 March, 2020

  2. Quantum phase estimation in one slide GOAL: compute eigenvalue φ with error δ using exact eigenvector | φ � Alessandro Roggero JLAB - 17 Mar 2020 1 / 18

  3. Quantum phase estimation in one slide GOAL: compute eigenvalue φ with error δ using exact eigenvector | φ � Hadamard test: one controlled- U operation and O (1 /δ 2 ) experiments | 0 � • H H | φ � U Alessandro Roggero JLAB - 17 Mar 2020 1 / 18

  4. Quantum phase estimation in one slide GOAL: compute eigenvalue φ with error δ using exact eigenvector | φ � Hadamard test: one controlled- U operation and O (1 /δ 2 ) experiments | 0 � • H H | φ � U Quantum Phase Estimation (QPE) uses O (1 /δ ) ∗ controlled- U operations, O (log(1 /δ )) ∗ ancilla qubits and only O (1) ∗ experiments | 0 � • H | 0 � • H V | 0 � • H | φ � U 2 U 4 U Alessandro Roggero JLAB - 17 Mar 2020 1 / 18

  5. Quantum phase estimation in one slide GOAL: compute eigenvalue φ with error δ using exact eigenvector | φ � Hadamard test: one controlled- U operation and O (1 /δ 2 ) experiments | 0 � • H H | φ � U Quantum Phase Estimation (QPE) uses O (1 /δ ) ∗ controlled- U operations, O (log(1 /δ )) ∗ ancilla qubits and only O (1) ∗ experiments | 0 � • H | 0 � • H V | 0 � • H | φ � U 2 U 4 U BONUS: works even if | φ � → α | φ � + β | ξ � with O (1 /α 2 ) ∗ experiments Alessandro Roggero JLAB - 17 Mar 2020 1 / 18

  6. Filling in the details Abrams & Lloyd (1999) · · · | 0 � • H . . . . . . . . . QFT † · · · | 0 � • H | 0 � • · · · H · · · | φ � U 2 U 2 m − 1 U The QPE algortihm has 4 main stages 1 prepare m ancilla in uniform superposition of basis states 2 apply controlled phases using U k with k = 2 0 , 2 1 , . . . , 2 m − 1 3 perform (inverse) Fourier transorm on ancilla register 4 measure the ancilla register Alessandro Roggero JLAB - 17 Mar 2020 2 / 18

  7. Filling in the details: state preparation | 0 � · · · • H . . . . . . . . . QFT † · · · | 0 � • H | 0 � • · · · H | φ � U 2 · · · U 2 m − 1 U 1 prepare m ancilla in uniform superposition of basis states � | 0 � + | 1 � � � | 0 � + | 1 � � � | 0 � + | 1 � � | Φ 1 � = H ⊗ m | 0 � m = √ √ √ ⊗ ⊗ · · · ⊗ 2 2 2 2 m − 1 1 � = √ | k � 2 m k =0 BINARY REPRESENTATION: use | 3 � to indicate | 00011 � see DL lectures Alessandro Roggero JLAB - 17 Mar 2020 3 / 18

  8. Filling in the details: phase kickback | 0 � · · · • H . . . . . . . . . QFT † | 0 � • · · · H · · · | 0 � • H | φ � U 2 · · · U 2 m − 1 U The state | φ � is an eigenstate of U with U | φ � = exp( i 2 πφ ) | φ � 2 each c- U k applies a phase exp( i 2 πkφ ) to the | 1 � state of the ancilla � | 0 � + e i 2 πφ | 1 � ⊗ | 0 � + e i 4 πφ | 1 � ⊗ · · · ⊗ | 0 � + e i 2 m πφ | 1 � � | Φ 2 � = √ √ √ ⊗ | φ � 2 2 2 2 m − 1 1 � √ = exp ( i 2 πφk ) | k � ⊗ | φ � 2 m k =0 Alessandro Roggero JLAB - 17 Mar 2020 4 / 18

  9. Filling in the details: inverse QFT · · · | 0 � • H . . . . . . . . . QFT † | 0 � • · · · H | 0 � • · · · H · · · U 2 m − 1 | φ � U 2 U Recall that: QFT † | k � = � 2 m − 1 � � 1 − i 2 π qk exp | q � see DL lectures √ q =0 2 m 2 m 3 after an inverse QFT the final state is 2 m − 1 2 m − 1 | Φ 3 � = QFT † | Φ 2 � = 1 φ − q � � �� � � exp i 2 πk | q � ⊗ | φ � 2 m 2 m k =0 q =0 Alessandro Roggero JLAB - 17 Mar 2020 5 / 18

  10. Filling in the details: final measurement | 0 � · · · • H . . . . . . . . . QFT † | 0 � • · · · H · · · | 0 � • H | φ � U 2 · · · U 2 m − 1 U 2 m − 1 2 m − 1 � �� 1 � i 2 πk � � 2 m (2 m φ − q ) | Φ 3 � = exp | q � ⊗ | φ � 2 m q =0 k =0 4 if phase φ is a m -bit number we can find 0 ≤ p < 2 m s.t. 2 m φ = p 2 m − 1 � | Φ 3 � = δ q,p | q � ⊗ | φ � = | p � ⊗ | φ � q =0 ⇒ exact solution with only 1 measurement! Alessandro Roggero JLAB - 17 Mar 2020 6 / 18

  11. Final measurement: generic phase . . . � 2 m (2 m φ − q ) � | Φ 3 � = � 2 m − 1 � 2 m − 1 e i 2 πk 1 | 0 � QPE m | q � ⊗ | φ � q =0 2 m k =0 | φ � when 2 m φ is not an integer we can sum the term in parenthesis as 2 m − 1 � sin (2 m x/ 2) e ixk = 1 − e i 2 m x ix � 2(2 m − 1) � = exp 1 − e ix sin ( x/ 2) k =0 Alessandro Roggero JLAB - 17 Mar 2020 7 / 18

  12. Final measurement: generic phase . . . � 2 m (2 m φ − q ) � | Φ 3 � = � 2 m − 1 � 2 m − 1 e i 2 πk 1 | 0 � QPE m | q � ⊗ | φ � q =0 2 m k =0 | φ � when 2 m φ is not an integer we can sum the term in parenthesis as 2 m − 1 � sin (2 m x/ 2) e ixk = 1 − e i 2 m x ix � 2(2 m − 1) � = exp 1 − e ix sin ( x/ 2) k =0 we will measure the ancilla register in | q � with probability sin 2 ( Mπ ( φ − q/M )) 1 P ( q ) = sin 2 ( π ( φ − q/M )) M 2 where we have defined M = 2 m Alessandro Roggero JLAB - 17 Mar 2020 7 / 18

  13. Final measurement: generic phase example example taken from A. Childs lecture notes (2011) sin 2 ( Mπ ( φ − q/M )) 1 P ( q ) = sin 2 ( π ( φ − q/M )) M 2 EXERCISE: show that if r = ⌈ Mφ ⌋ then P ( r ) ≥ 4 /π 2 ≈ 0 . 4 Alessandro Roggero JLAB - 17 Mar 2020 8 / 18

  14. Final measurement: generic phase example example taken from A. Childs lecture notes (2011) sin 2 ( Mπ ( φ − q/M )) 1 P ( q ) = sin 2 ( π ( φ − q/M )) M 2 EXERCISE: show that if r = ⌈ Mφ ⌋ then P ( r ) ≥ 4 /π 2 ≈ 0 . 4 1 M=32 φ=32/256 0.8 0.6 P(q) 0.4 2 P min = 4/ π 0.2 0 0 4 8 12 16 20 24 28 32 Alessandro Roggero JLAB - 17 Mar 2020 8 / 18

  15. Final measurement: generic phase example example taken from A. Childs lecture notes (2011) sin 2 ( Mπ ( φ − q/M )) 1 P ( q ) = sin 2 ( π ( φ − q/M )) M 2 EXERCISE: show that if r = ⌈ Mφ ⌋ then P ( r ) ≥ 4 /π 2 ≈ 0 . 4 1 M=32 φ=33/256 0.8 0.6 P(q) 0.4 2 P min = 4/ π 0.2 0 0 4 8 12 16 20 24 28 32 Alessandro Roggero JLAB - 17 Mar 2020 8 / 18

  16. Final measurement: generic phase example example taken from A. Childs lecture notes (2011) sin 2 ( Mπ ( φ − q/M )) 1 P ( q ) = sin 2 ( π ( φ − q/M )) M 2 EXERCISE: show that if r = ⌈ Mφ ⌋ then P ( r ) ≥ 4 /π 2 ≈ 0 . 4 1 M=32 φ=34/256 0.8 0.6 P(q) 0.4 2 P min = 4/ π 0.2 0 0 4 8 12 16 20 24 28 32 Alessandro Roggero JLAB - 17 Mar 2020 8 / 18

  17. Final measurement: generic phase example example taken from A. Childs lecture notes (2011) sin 2 ( Mπ ( φ − q/M )) 1 P ( q ) = sin 2 ( π ( φ − q/M )) M 2 EXERCISE: show that if r = ⌈ Mφ ⌋ then P ( r ) ≥ 4 /π 2 ≈ 0 . 4 1 M=32 φ=35/256 0.8 0.6 P(q) 0.4 2 P min = 4/ π 0.2 0 0 4 8 12 16 20 24 28 32 Alessandro Roggero JLAB - 17 Mar 2020 8 / 18

  18. Final measurement: generic phase example example taken from A. Childs lecture notes (2011) sin 2 ( Mπ ( φ − q/M )) 1 P ( q ) = sin 2 ( π ( φ − q/M )) M 2 EXERCISE: show that if r = ⌈ Mφ ⌋ then P ( r ) ≥ 4 /π 2 ≈ 0 . 4 1 M=32 φ=36/256 0.8 0.6 P(q) 0.4 2 P min = 4/ π 0.2 0 0 4 8 12 16 20 24 28 32 Alessandro Roggero JLAB - 17 Mar 2020 8 / 18

  19. Final measurement: generic phase example example taken from A. Childs lecture notes (2011) sin 2 ( Mπ ( φ − q/M )) 1 P ( q ) = sin 2 ( π ( φ − q/M )) M 2 EXERCISE: show that if r = ⌈ Mφ ⌋ then P ( r ) ≥ 4 /π 2 ≈ 0 . 4 1 M=32 φ=37/256 0.8 0.6 P(q) 0.4 2 P min = 4/ π 0.2 0 0 4 8 12 16 20 24 28 32 Alessandro Roggero JLAB - 17 Mar 2020 8 / 18

  20. Final measurement: generic phase example example taken from A. Childs lecture notes (2011) sin 2 ( Mπ ( φ − q/M )) 1 P ( q ) = sin 2 ( π ( φ − q/M )) M 2 EXERCISE: show that if r = ⌈ Mφ ⌋ then P ( r ) ≥ 4 /π 2 ≈ 0 . 4 1 M=32 φ=38/256 0.8 0.6 P(q) 0.4 2 P min = 4/ π 0.2 0 0 4 8 12 16 20 24 28 32 Alessandro Roggero JLAB - 17 Mar 2020 8 / 18

  21. Final measurement: generic phase example example taken from A. Childs lecture notes (2011) sin 2 ( Mπ ( φ − q/M )) 1 P ( q ) = sin 2 ( π ( φ − q/M )) M 2 EXERCISE: show that if r = ⌈ Mφ ⌋ then P ( r ) ≥ 4 /π 2 ≈ 0 . 4 1 M=32 φ=39/256 0.8 0.6 P(q) 0.4 2 P min = 4/ π 0.2 0 0 4 8 12 16 20 24 28 32 Alessandro Roggero JLAB - 17 Mar 2020 8 / 18

  22. Final measurement: generic phase example example taken from A. Childs lecture notes (2011) sin 2 ( Mπ ( φ − q/M )) 1 P ( q ) = sin 2 ( π ( φ − q/M )) M 2 EXERCISE: show that if r = ⌈ Mφ ⌋ then P ( r ) ≥ 4 /π 2 ≈ 0 . 4 1 M=32 φ=40/256 0.8 0.6 P(q) 0.4 2 P min = 4/ π 0.2 0 0 4 8 12 16 20 24 28 32 Alessandro Roggero JLAB - 17 Mar 2020 8 / 18

  23. Final measurement: generic phase II sin 2 ( Mπ ( φ − q/M )) 1 P ( q ) = sin 2 ( π ( φ − q/M )) M 2 the best m -bit approximation to φ is p/M with p = ⌈ Mφ ⌋ the probabilty of making an error δ = ( q − p ) /M is 1 Probability of measuring phase with error δ 1 =2 M=2 0.8 0.6 0.4 0.2 0 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 δ Alessandro Roggero JLAB - 17 Mar 2020 9 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend