novel lower bounds on the entropy rate of binary hidden
play

Novel Lower Bounds on the Entropy Rate of Binary Hidden Markov - PowerPoint PPT Presentation

Novel Lower Bounds on the Entropy Rate of Binary Hidden Markov Processes Or Ordentlich MIT ISIT, Barcelona, July 11, 2016 1 / 13 Binary Markov Processes q 10 1 q 10 0 1 1 q 01 q 01 1 q 01 q 01 P = , P = = [ 0


  1. Novel Lower Bounds on the Entropy Rate of Binary Hidden Markov Processes Or Ordentlich MIT ISIT, Barcelona, July 11, 2016 1 / 13

  2. Binary Markov Processes q 10 1 − q 10 0 1 1 − q 01 q 01 � 1 − q 01 � q 01 P = , π P = π = [ π 0 π 1 ] q 10 1 − q 10 X 1 ∼ Bernoulli ( π 1 ), Pr( X n = j | X n − 1 = i , X n − 2 , . . . , X 1 ) = P ij 2 / 13

  3. Binary Markov Processes q 10 1 − q 10 0 1 1 − q 01 q 01 � 1 − q 01 � q 01 P = , π P = π = [ π 0 π 1 ] q 10 1 − q 10 X 1 ∼ Bernoulli ( π 1 ), Pr( X n = j | X n − 1 = i , X n − 2 , . . . , X 1 ) = P ij Entropy Rate For a stationary process { X n } the entropy rate is defined as H ( X 1 , . . . , X n ) ¯ H ( X ) � lim = lim n →∞ H ( X n | X n − 1 , . . . , X 1 ) n n →∞ 2 / 13

  4. Binary Markov Processes q 10 1 − q 10 0 1 1 − q 01 q 01 � 1 − q 01 � q 01 P = , π P = π = [ π 0 π 1 ] q 10 1 − q 10 X 1 ∼ Bernoulli ( π 1 ), Pr( X n = j | X n − 1 = i , X n − 2 , . . . , X 1 ) = P ij Entropy Rate For the Markov process above ¯ H ( X ) = H ( X n | X n − 1 ) = π 0 h ( q 01 ) + π 1 h ( q 10 ) h ( α ) � − α log 2 ( α ) − (1 − α ) log 2 (1 − α ) 2 / 13

  5. Binary Hidden Markov Processes q 10 { X n } : 1 − q 10 0 1 1 − q 01 q 01 3 / 13

  6. Binary Hidden Markov Processes q 10 { X n } : 1 − q 10 0 1 1 − q 01 q 01 { Y n } : P Y | X X n Y n 3 / 13

  7. Binary Hidden Markov Processes q 10 { X n } : 1 − q 10 0 1 1 − q 01 q 01 { Y n } : Z n ∼ Bernoulli ( α ) X n Y n = X n ⊕ Z n 3 / 13

  8. Binary Hidden Markov Processes q 10 { X n } : 1 − q 10 0 1 1 − q 01 q 01 { Y n } : Z n ∼ Bernoulli ( α ) X n Y n = X n ⊕ Z n Entropy Rate Unknown ¯ H ( Y ) = f ( α, q 10 , q 01 ) =??? 3 / 13

  9. Binary Hidden Markov Processes q 10 { X n } : 1 − q 10 0 1 1 − q 01 q 01 { Y n } : Z n ∼ Bernoulli ( α ) X n Y n = X n ⊕ Z n Entropy Rate Unknown ¯ H ( Y ) = f ( α, q 10 , q 01 ) =??? Our contribution: new lower bounds on ¯ H ( Y ) 3 / 13

  10. Binary Symmetric Hidden Markov Processes q { X n } : 1 − q 0 1 1 − q q { Y n } : Z n ∼ Bernoulli ( α ) X n Y n = X n ⊕ Z n Entropy Rate Unknown ¯ H ( Y ) = f ( α, q ) =??? 4 / 13

  11. Binary Symmetric HMP - Simple Bounds “Cover-Thomas bounds”: H ( Y n | Y n − 1 . . . , Y 1 , X 0 ) ≤ ¯ H ( Y ) ≤ H ( Y n | Y n − 1 . . . , Y 0 ) 5 / 13

  12. Binary Symmetric HMP - Simple Bounds “Cover-Thomas bounds”: H ( Y n | Y n − 1 . . . , Y 1 , X 0 ) ≤ ¯ H ( Y ) ≤ H ( Y n | Y n − 1 . . . , Y 0 ) Accuracy improves exponentially with n [Birch’62] 5 / 13

  13. Binary Symmetric HMP - Simple Bounds “Cover-Thomas bounds”: H ( Y n | Y n − 1 . . . , Y 1 , X 0 ) ≤ ¯ H ( Y ) ≤ H ( Y n | Y n − 1 . . . , Y 0 ) Accuracy improves exponentially with n [Birch’62] Simple lower bound by Mrs. Gerber’s Lemma: � � H ( X 1 , . . . , X n ) �� α ∗ h − 1 H ( Y 1 , . . . , Y n ) ≥ nh n h − 1 : [0 , 1] → [0 , 1 / 2] a ∗ b = a (1 − b ) + b (1 − a ), 5 / 13

  14. Binary Symmetric HMP - Simple Bounds “Cover-Thomas bounds”: H ( Y n | Y n − 1 . . . , Y 1 , X 0 ) ≤ ¯ H ( Y ) ≤ H ( Y n | Y n − 1 . . . , Y 0 ) Accuracy improves exponentially with n [Birch’62] Simple lower bound by Mrs. Gerber’s Lemma: � � H ( X 1 , . . . , X n ) �� α ∗ h − 1 H ( Y 1 , . . . , Y n ) ≥ nh n � � �� H ( X 1 , . . . , X n ) ⇒ ¯ α ∗ h − 1 H ( Y ) ≥ h lim n n →∞ � � α ∗ h − 1 ( u ) Continuity of MGL function ϕ ( u ) = h 5 / 13

  15. Binary Symmetric HMP - Simple Bounds “Cover-Thomas bounds”: H ( Y n | Y n − 1 . . . , Y 1 , X 0 ) ≤ ¯ H ( Y ) ≤ H ( Y n | Y n − 1 . . . , Y 0 ) Accuracy improves exponentially with n [Birch’62] Simple lower bound by Mrs. Gerber’s Lemma: � � H ( X 1 , . . . , X n ) �� α ∗ h − 1 H ( Y 1 , . . . , Y n ) ≥ nh n � � �� H ( X 1 , . . . , X n ) ⇒ ¯ α ∗ h − 1 H ( Y ) ≥ h lim n n →∞ ⇒ ¯ H ( Y ) ≥ h ( α ∗ q ) ¯ H ( X ) = h ( q ) 5 / 13

  16. Binary Symmetric HMP - Simple Bounds “Cover-Thomas bounds”: H ( Y n | Y n − 1 . . . , Y 1 , X 0 ) ≤ ¯ H ( Y ) ≤ H ( Y n | Y n − 1 . . . , Y 0 ) Accuracy improves exponentially with n [Birch’62] Simple lower bound by Mrs. Gerber’s Lemma: � � H ( X 1 , . . . , X n ) �� α ∗ h − 1 H ( Y 1 , . . . , Y n ) ≥ nh n � � �� H ( X 1 , . . . , X n ) ⇒ ¯ α ∗ h − 1 H ( Y ) ≥ h lim n n →∞ ⇒ ¯ H ( Y ) ≥ h ( α ∗ q ) The same as Cover-Thomas bound of order n = 1 5 / 13

  17. Binary Symmetric HMP - Simple Bounds “Cover-Thomas bounds”: H ( Y n | Y n − 1 . . . , Y 1 , X 0 ) ≤ ¯ H ( Y ) ≤ H ( Y n | Y n − 1 . . . , Y 0 ) Accuracy improves exponentially with n [Birch’62] Simple lower bound by Mrs. Gerber’s Lemma: � � H ( X 1 , . . . , X n ) �� α ∗ h − 1 H ( Y 1 , . . . , Y n ) ≥ nh n � � �� H ( X 1 , . . . , X n ) ⇒ ¯ α ∗ h − 1 H ( Y ) ≥ h lim n n →∞ ⇒ ¯ H ( Y ) ≥ h ( α ∗ q ) Standard MGL gives a weak estimate 5 / 13

  18. Binary Symmetric HMP - Simple Bounds “Cover-Thomas bounds”: H ( Y n | Y n − 1 . . . , Y 1 , X 0 ) ≤ ¯ H ( Y ) ≤ H ( Y n | Y n − 1 . . . , Y 0 ) Accuracy improves exponentially with n [Birch’62] Simple lower bound by Mrs. Gerber’s Lemma: � � H ( X 1 , . . . , X n ) �� α ∗ h − 1 H ( Y 1 , . . . , Y n ) ≥ nh n � � �� H ( X 1 , . . . , X n ) ⇒ ¯ α ∗ h − 1 H ( Y ) ≥ h lim n n →∞ ⇒ ¯ H ( Y ) ≥ h ( α ∗ q ) Standard MGL gives a weak estimate We will use an improved version of MGL 5 / 13

  19. Samorodnitsky’s MGL X , Y ∈ { 0 , 1 } n are the input and output of a BSC ( α ) λ � (1 − 2 α ) 2 The projection of X onto a subset of coordinates S ⊆ [ n ] is X S � { X i : i ∈ S } Let V be a random subset of [ n ] generated by independently sampling each element i with probability λ Theorem [Samorodnitsky’15] � � H ( X V | V ) �� α ∗ h − 1 H ( Y ) ≥ nh λ n 6 / 13

  20. Samorodnitsky’s MGL X , Y ∈ { 0 , 1 } n are the input and output of a BSC ( α ) λ � (1 − 2 α ) 2 The projection of X onto a subset of coordinates S ⊆ [ n ] is X S � { X i : i ∈ S } Let V be a random subset of [ n ] generated by independently sampling each element i with probability λ Theorem [Samorodnitsky’15] � � H ( X V | V ) �� α ∗ h − 1 H ( Y ) ≥ nh λ n is nonincreasing ∗ in λ By Han’s inequality H ( X V | V ) λ n 6 / 13

  21. Samorodnitsky’s MGL X , Y ∈ { 0 , 1 } n are the input and output of a BSC ( α ) λ � (1 − 2 α ) 2 The projection of X onto a subset of coordinates S ⊆ [ n ] is X S � { X i : i ∈ S } Let V be a random subset of [ n ] generated by independently sampling each element i with probability λ Theorem [Samorodnitsky’15] � � H ( X V | V ) �� α ∗ h − 1 H ( Y ) ≥ nh λ n ⇒ The new bound is stronger than MGL 6 / 13

  22. Samorodnitsky’s MGL - Proof Outline n � H ( Y i | Y i − 1 H ( Y ) = ) 1 i =1 n � ϕ ( H ( X i | Y i − 1 ≥ )) 1 i =1 n � � � H ( X i ) − I ( X i ; Y i − 1 = ϕ ) 1 i =1 � � ϕ ( x ) � h α ∗ h − 1 ( x ) 7 / 13

  23. Samorodnitsky’s MGL - Proof Outline n � H ( Y i | Y i − 1 H ( Y ) = ) 1 i =1 n � ϕ ( H ( X i | Y i − 1 ≥ )) 1 i =1 n � � � H ( X i ) − I ( X i ; Y i − 1 = ϕ ) 1 i =1 Need to upper bound I ( X i ; Y i − 1 ) 1 7 / 13

  24. Samorodnitsky’s MGL - Proof Outline n � H ( Y i | Y i − 1 H ( Y ) = ) 1 i =1 n � ϕ ( H ( X i | Y i − 1 ≥ )) 1 i =1 n � � � H ( X i ) − I ( X i ; Y i − 1 = ϕ ) 1 i =1 Need to upper bound I ( X i ; Y i − 1 ) = I ( X i ; Y i − 2 ) + I ( X i ; Y i − 1 | Y i − 2 ) 1 1 1 7 / 13

  25. Samorodnitsky’s MGL - Proof Outline n � H ( Y i | Y i − 1 H ( Y ) = ) 1 i =1 n � ϕ ( H ( X i | Y i − 1 ≥ )) 1 i =1 n � � � H ( X i ) − I ( X i ; Y i − 1 = ϕ ) 1 i =1 Need to upper bound I ( X i ; Y i − 1 ) = I ( X i ; Y i − 2 ) + I ( X i ; Y i − 1 | Y i − 2 ) 1 1 1 (SDPI) ≤ I ( X i ; Y i − 2 ) + λ I ( X i ; X i − 1 | Y i − 2 ) 1 1 7 / 13

  26. Samorodnitsky’s MGL - Proof Outline n � H ( Y i | Y i − 1 H ( Y ) = ) 1 i =1 n � ϕ ( H ( X i | Y i − 1 ≥ )) 1 i =1 n � � � H ( X i ) − I ( X i ; Y i − 1 = ϕ ) 1 i =1 Need to upper bound I ( X i ; Y i − 1 ) = I ( X i ; Y i − 2 ) + I ( X i ; Y i − 1 | Y i − 2 ) 1 1 1 (SDPI) ≤ I ( X i ; Y i − 2 ) + λ I ( X i ; X i − 1 | Y i − 2 ) 1 1 � � = (1 − λ ) I ( X i ; Y i − 2 I ( X i ; Y i − 2 ) + I ( X i ; X i − 1 | Y i − 2 ) + λ ) 1 1 1 7 / 13

  27. Samorodnitsky’s MGL - Proof Outline n � H ( Y i | Y i − 1 H ( Y ) = ) 1 i =1 n � ϕ ( H ( X i | Y i − 1 ≥ )) 1 i =1 n � � � H ( X i ) − I ( X i ; Y i − 1 = ϕ ) 1 i =1 Need to upper bound I ( X i ; Y i − 1 ) = I ( X i ; Y i − 2 ) + I ( X i ; Y i − 1 | Y i − 2 ) 1 1 1 (SDPI) ≤ I ( X i ; Y i − 2 ) + λ I ( X i ; X i − 1 | Y i − 2 ) 1 1 � � = (1 − λ ) I ( X i ; Y i − 2 I ( X i ; Y i − 2 ) + I ( X i ; X i − 1 | Y i − 2 ) + λ ) 1 1 1 (Chain Rule) = (1 − λ ) I ( X i ; Y i − 2 ) + λ I ( X i ; X i − 1 , Y i − 2 ) 1 1 7 / 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend