not incompatible logics
play

Not Incompatible Logics Olivier Hermant MINES ParisTech, PSL - PowerPoint PPT Presentation

Not Incompatible Logics Olivier Hermant MINES ParisTech, PSL Research University Inria October, 18th October, 18th O. Hermant Not Incompatible 1 / 10 Two Incompatible Logics Constructivism (BHK) first-order approximation:


  1. Not Incompatible Logics Olivier Hermant MINES ParisTech, PSL Research University Inria October, 18th October, 18th O. Hermant Not Incompatible 1 / 10

  2. Two Incompatible Logics ◮ Constructivism (BHK) ⋆ first-order approximation: intuitionistic logic ◮ Classicism ⋆ first-order classical logic ◮ in particuliar, arithmetic: ⋆ Peano and Heyting versions ⋆ same axioms, differents inference rules October, 18th O. Hermant Not Incompatible 2 / 10

  3. Two Incompatible Logics ◮ Constructivism (BHK) ⋆ first-order approximation: intuitionistic logic ◮ Classicism ⋆ first-order classical logic ◮ in particuliar, arithmetic: ⋆ Peano and Heyting versions ⋆ same axioms, differents inference rules ◮ very pernicious conflict: ⋆ same syntax, different semantic ⋆ at least, sound ◮ two confronting schools for a long time: ⋆ incompatible properties ⋆ incompatible persons ◮ how can we conciliate them ? October, 18th O. Hermant Not Incompatible 2 / 10

  4. The Root of the Problem Disjunction Property A proof of ⊢ i A ∨ B can be turned into a proof of ⊢ i A or a proof of ⊢ i B . ◮ in classical logic ⊢ c A ∨ ¬ A provable whatever is A ◮ another formulation: ⊢ c ¬¬ A ⇒ A ◮ similarly for the ∃ quantifier: ⋆ witness property ⋆ Drinker’s paradox ◮ lot of solutions ⋆ depends of what we are expecting ⋆ as discussed yesterday ⋆ and may be today October, 18th O. Hermant Not Incompatible 3 / 10

  5. Double Negation Translations Kolmogorov (1925) 1 B Ko = ¬¬ B (atoms) ( B ∧ C ) Ko = ¬¬ ( B Ko ∧ C Ko ) ( B ∨ C ) Ko = ¬¬ ( B Ko ∨ C Ko ) ( B ⇒ C ) Ko = ¬¬ ( B Ko ⇒ C Ko ) ( ∀ xA ) Ko = ¬¬ ( ∀ xA Ko ) ( ∃ xA ) Ko = ¬¬ ( ∃ xA Ko ) Theorem Γ ⊢ ∆ classical provable iff Γ Ko , ¬ ∆ Ko ⊢ intuitionistically provable. October, 18th O. Hermant Not Incompatible 4 / 10

  6. Double Negation Translations Kolmogorov (1925) 1 Gödel and Gentzen (1931) 2 ⋆ ∨ and ∃ , are the conflicting connective/quantifiers ⋆ leave the rest unchanged B gg = ¬¬ B (atoms) ( A ∧ B ) gg = A gg ∧ B gg ( A ∨ B ) gg = ¬ ( ¬ A gg ∧ ¬ B gg ) ( A ⇒ B ) gg = A gg ⇒ B gg ( ∀ xA ) gg = ∀ xA gg ( ∃ xA ) gg = ¬∀ x ¬ A gg Theorem Γ ⊢ ∆ classical provable iff Γ gg , ¬ ∆ gg ⊢ intuitionistically provable. October, 18th O. Hermant Not Incompatible 4 / 10

  7. Double Negation Translations Kolmogorov (1925) 1 Gödel and Gentzen (1931) 2 ⋆ ∨ and ∃ , are the conflicting connective/quantifiers ⋆ leave the rest unchanged Glivenko (1929): head negation enough in the propositional case 3 Kuroda (1951): extension to FO: reset after each ∀ quantifier 4 B Ku = B (atoms) ( A ∧ B ) Ku = A Ku ∧ B Ku ( A ∨ B ) Ku = A Ku ∨ B Ku ( A ⇒ B ) Ku = A Ku ⇒ B Ku ( ∀ xA ) Ku = ∀ x ¬¬ A Ku ( ∃ xA ) Ku = ∀ x A Ku Theorem Γ ⊢ ∆ classical provable iff Γ Ku , ¬ ∆ Ku ⊢ intuitionistically provable. October, 18th O. Hermant Not Incompatible 4 / 10

  8. More Refinments ◮ left intuitionstic and classical sequent rules identical: ⋆ no need to translate anything on LHS of Γ ⊢ c ∆ ⋆ applies to cut-free calculus. Most of the time enough LHS RHS B Ko = B B Ko = B ( B ∧ C ) Ko = ( ¬¬ B Ko ∧ ¬¬ C Ko ) ( B ∧ C ) Ko = ( ¬¬ B Ko ∧ ¬¬ C Ko ) ( B ∨ C ) Ko = ( ¬¬ B Ko ∨ ¬¬ C Ko ) ( B ∨ C ) Ko = ( ¬¬ B Ko ∨ ¬¬ C Ko ) ( B ⇒ C ) Ko = ( ¬¬ B Ko ⇒ ¬¬ C Ko ) ( B ⇒ C ) Ko = ( ¬¬ B Ko ⇒ ¬¬ C Ko ) ( ∀ xA ) Ko = ∀ x ¬¬ A Ko ( ∀ xA ) Ko = ∀ x ¬¬ A Ko ( ∃ xA ) Ko = ∃ x ¬¬ A Ko ( ∃ xA ) Ko = ∃ x ¬¬ A Ko October, 18th O. Hermant Not Incompatible 5 / 10

  9. More Refinments ◮ left intuitionstic and classical sequent rules identical: ⋆ no need to translate anything on LHS of Γ ⊢ c ∆ ⋆ applies to cut-free calculus. Most of the time enough LHS RHS B K + = B B K − = B ( B ∧ C ) K + = ( ( B ∧ C ) K − = ( ¬¬ B K − ∧ ¬¬ C K − ) B K + ∧ C K + ) ( B ∨ C ) K + = ( ( B ∨ C ) K − = ( ¬¬ B K − ∨ ¬¬ C K − ) B K + ∨ C K + ) ( B ⇒ C ) K + = ( ¬¬ B K − ⇒ ( B ⇒ C ) K − = ( B K + ⇒ ¬¬ C K − ) C K + ) ( ∀ xA ) K + = ∀ xA K + ( ∀ xA ) K − = ∀ x ¬¬ A K − ( ∃ xA ) K + = ∃ xA K + ( ∃ xA ) K − = ∃ x ¬¬ A K − October, 18th O. Hermant Not Incompatible 5 / 10

  10. More Refinments ◮ left intuitionstic and classical sequent rules identical: ⋆ no need to translate anything on LHS of Γ ⊢ c ∆ ⋆ applies to cut-free calculus. Most of the time enough ◮ Gilbert: left/right + Kuroda + Gödel-Gentzen. ⋆ Minimal. End of Story ? RHS (gg) LHS RHS (Ku) ϕ ( P ) = ¬¬ P χ ( P ) = P ψ ( P ) = P ϕ ( B ∧ C ) = ϕ ( B ) ∧ ϕ ( C ) χ ( B ∧ C ) = χ ( B ) ∧ χ ( C ) ψ ( B ∧ C ) = ψ ( B ) ∧ ψ ( C ) ϕ ( B ∨ C ) = ¬¬ ( ψ ( B ) ∨ ψ ( C )) χ ( B ∨ C ) = χ ( B ) ∨ χ ( C ) ψ ( B ∨ C ) = ψ ( B ) ∨ ψ ( C ) ϕ ( B ⇒ C ) = χ ( B ) ⇒ ϕ ( C ) χ ( B ⇒ C ) = ψ ( B ) ⇒ χ ( C ) ψ ( B ⇒ C ) = χ ( B ) ⇒ ψ ( C ) ϕ ( ¬ B ) = ¬ χ ( B ) χ ( ¬ B ) = ¬ ψ ( B ) ψ ( ¬ B ) = ¬ χ ( B ) ϕ ( ∀ xA ) = ∀ x ϕ ( A ) χ ( ∀ xA ) = ∀ x χ ( A ) ψ ( ∀ xA ) = ∀ x ϕ ( A ) ϕ ( ∃ xA ) = ¬¬∃ x ψ ( A ) χ ( ∃ xA ) = ∃ x χ ( A ) ψ ( ∃ xA ) = ∃ x ψ ( A ) Theorem Γ ⊢ C classically iff χ (Γ) ⊢ ϕ ( C ) intuitionistically. October, 18th O. Hermant Not Incompatible 5 / 10

  11. More Insights ◮ Chaudhuri, Clerc, Ilik, Miller: ⋆ bijections between proofs of focused calculi ⋆ generating a particular translation by choosing a polarity ◮ Friedman: ⋆ generalize: replace “ ¬ ” with “ ⇒ A ” in translations ⋆ theorem: Theorem Γ ⊢ ∆ classical provable iff Γ Ku , ¬ ∆ Ku ⊢ ⊥ provable. October, 18th O. Hermant Not Incompatible 6 / 10

  12. More Insights ◮ Chaudhuri, Clerc, Ilik, Miller: ⋆ bijections between proofs of focused calculi ⋆ generating a particular translation by choosing a polarity ◮ Friedman: ⋆ generalize: replace “ ¬ ” with “ ⇒ A ” in translations ⋆ theorem: Theorem Γ ⊢ ∆ classical provable iff Γ A , ∆ A ⇒ A ⊢ A provable. October, 18th O. Hermant Not Incompatible 6 / 10

  13. More Insights ◮ Chaudhuri, Clerc, Ilik, Miller: ⋆ bijections between proofs of focused calculi ⋆ generating a particular translation by choosing a polarity ◮ Friedman: ⋆ generalize: replace “ ¬ ” with “ ⇒ A ” in translations ⋆ theorem: Theorem Γ ⊢ ∆ classical provable iff Γ A , ∆ A ⇒ A ⊢ A provable. ⋆ equiprovability of certain statements ( Π 0 2 ) ⋆ require decidability of some class of formulas ⋆ “Friedman’s trick”: take as A the statement itself. October, 18th O. Hermant Not Incompatible 6 / 10

  14. Mixed Logics ◮ “ On the Unity of Logic ”, Girard (1993) ◮ not the logic is classical/intuitionistic/... ◮ ... but the connectives ◮ problem: ⋆ usual translations negate atoms (no connective here) B Ko = ¬¬ B (atoms) ( B ∧ C ) Ko = ¬¬ ( B Ko ∧ C Ko ) ( B ∨ C ) Ko = ¬¬ ( B Ko ∨ C Ko ) ( B ⇒ C ) Ko = ¬¬ ( B Ko ⇒ C Ko ) ( ∀ xA ) Ko = ¬¬ ( ∀ xA Ko ) ( ∃ xA ) Ko = ¬¬ ( ∃ xA Ko ) Theorem Γ ⊢ ∆ classical provable iff Γ Ko , � \ ∆ Ko ⊢ provable. October, 18th O. Hermant Not Incompatible 7 / 10

  15. Mixed Logics ◮ “ On the Unity of Logic ”, Girard (1993) ◮ not the logic is classical/intuitionistic/... ◮ ... but the connectives ◮ problem: ⋆ usual translations negate atoms (no connective here) ⋆ “light” translations negate the whole (no connective there either) B Ko = B (atoms) ( B ∧ C ) Ko = ( ¬¬ B Ko ∧ ¬¬ C Ko ) ( B ∨ C ) Ko = ( ¬¬ B Ko ∨ ¬¬ C Ko ) ( B ⇒ C ) Ko = ( ¬¬ B Ko ⇒ ¬¬ C Ko ) ( ∀ xA ) Ko = ∀ x ¬¬ A Ko ( ∃ xA ) Ko = ∃ x ¬¬ A Ko Theorem Γ ⊢ ∆ classical provable iff Γ Ko , ¬ ∆ Ko ⊢ provable. October, 18th O. Hermant Not Incompatible 7 / 10

  16. Mixing Logics ◮ Dowek’s translation goes double B Do = B (atoms) ( B ∧ C ) Do = ¬¬ ( ¬¬ B Do ∧ ¬¬ C Do ) ( B ∨ C ) Do = ¬¬ ( ¬¬ B Do ∨ ¬¬ C Do ) ( B ⇒ C ) Do = ¬¬ ( ¬¬ B Do ⇒ ¬¬ C Do ) ( ∀ xA ) Do = ¬¬∀ x ¬¬ A Do ( ∃ xA ) Do = ¬¬∃ x ¬¬ A Do October, 18th O. Hermant Not Incompatible 8 / 10

  17. Mixing Logics ◮ Dowek’s translation goes double B Do = B (atoms) ( B ∧ C ) Do = ¬¬ ( ¬¬ B Do ∧ ¬¬ C Do ) ( B ∨ C ) Do = ¬¬ ( ¬¬ B Do ∨ ¬¬ C Do ) ( B ⇒ C ) Do = ¬¬ ( ¬¬ B Do ⇒ ¬¬ C Do ) ( ∀ xA ) Do = ¬¬∀ x ¬¬ A Do ( ∃ xA ) Do = ¬¬∃ x ¬¬ A Do ◮ gain: no negated atoms, no negated formulas ◮ definition of classical connectives and quantifiers ( B ∧ c C ) = ¬¬ ( ¬¬ B ∧ i ¬¬ C ) ( B ∨ c C ) = ¬¬ ( ¬¬ B ∨ i ¬¬ C ) ( B ⇒ c C ) = ¬¬ ( ¬¬ B ⇒ i ¬¬ C ) ( ∀ c xA ) = ¬¬∀ i x ¬¬ A ( ∃ c xA ) = ¬¬∃ i x ¬¬ A ◮ intuitionistic calculus as a basis October, 18th O. Hermant Not Incompatible 8 / 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend