non relativistic variants of conformal invariance and
play

Non-relativistic variants of conformal invariance and physical - PowerPoint PPT Presentation

Non-relativistic variants of conformal invariance and physical ageing Malte Henkel Groupe de Physique Statistique, Institut Jean Lamour (CNRS UMR 7198) Universit e de Lorraine Nancy , France Atelier Renormalization in statistical physics


  1. Non-relativistic variants of conformal invariance and physical ageing Malte Henkel Groupe de Physique Statistique, Institut Jean Lamour (CNRS UMR 7198) Universit´ e de Lorraine Nancy , France Atelier ‘Renormalization in statistical physics and lattice field theories’ Institut Montpell´ erian Alexandre Grothendieck, aoˆ ut 2015 mh, J.D. Noh and M. Pleimling , Phys. Rev. E85 , 030102(R) (2012) mh , Nucl. Phys. B869 , 282 (2013); mh & S. Rouhani , J. Phys. A46 , 494004 (2013) mh , Springer Proc. Math. Stat. 85 , 511 (2014); mh & S. Stoimenov , idem 111 , 33 (2015) mh & X. Durang , J. Stat. Mech. P05022 (2015) & work in progress

  2. Overview : 1. Dynamical scaling & ageing : physical background 2. Form of the scaling functions & L ocal S cale- I nvariance ( lsi ) 3. Long-distance behaviour & Causality parabolic sub-algebras, analyticity 4. Proposal for local scale-transformations for z � = 2 5. Simple magnets and growing interfaces : analogies 6. Numerical experiments 7. Logarithmic conformal & Schr¨ odinger invariance 8. Logarithmic ageing-invariance 9. Conclusions ambition : argue for the applicability of lsi in non-equilibrium statistical mechanics & indicate some relevant mathematical structures

  3. 1. Dynamical scaling & ageing : physical background Equilibrium critical phenomena : scale-invariance For sufficiently local interactions : extend to conformal invariance space -dependent re-scaling (angles conserved) r �→ r / b ( r ) Polyakov 70 In two dimensions : ∞ many conformal transformations ( w �→ f ( w ) analytic) ⇒ exact predictions for critical exponents, correlators, . . . BPZ 84 What about time -dependent critical phenomena ? Characterised by dynamical exponent z : t �→ tb − z , r �→ r b − 1 Can one extend to local dynamical scaling, with z � = 1 ? If z = 2, the Schr¨ odinger group is an example : (Jacobi 1842), Lie 1881 t �→ α t + β , r �→ D r + v t + a ; αδ − βγ = 1 γ t + δ γ t + δ ⇒ study ageing phenomena as paradigmatic example

  4. Ageing phenomena why do materials look old after some time ? known & practically used since prehistoric times (metals, glasses) systematically studied in physics since the 1970s Struik ’78 occur in widely different systems (structural glasses, spin glasses, polymers, simple magnets, . . . ) The three defining symmetry properties of ageing : 1 slow relaxation (non-exponential !) 2 no time-translation-invariance ( tti ) 3 dynamical scaling ‘Magnets’ : no disorder, no frustration − → more simple to understand Interfaces : out of equilibrium, many analogies Question : what is the current evidence for larger, local scaling symmetries ?

  5. for symmetry analysis : ageing in simple systems without disorder consider a simple magnet (ferromagnet, i.e. Ising model) 1 prepare system initially at high temperature T ≫ T c > 0 2 quench to temperature T < T c (or T = T c ) → non-equilibrium state 3 fix T and observe dynamics competition : at least 2 equivalent ground states local fields lead to rapid local ordering no global order, relaxation time ∞ formation of ordered domains, of linear size L = L ( t ) ∼ t 1 / z dynamical exponent z

  6. t = t 1 t = t 2 > t 1 magnet T < T c − → ordered cluster magnet T = T c − → correlated cluster growth of ordered/correlated domains, of typical linear size L ( t ) ∼ t 1 / z dynamical exponent z : determined by equilibrium state

  7. illustration of statistical self-similarity for different times t 1 < t 2 Walter ’10

  8. Two-time observables : analogy with ‘magnets’ time-dependent order-parameter φ ( t , r ) two-time correlator C ( t , s ; r ) := � φ ( t , r ) φ ( s , 0 ) � − � φ ( t , r ) � � φ ( s , r ) � � � � � R ( t , s ; r ) := δ � φ ( t , r ) � � φ ( t , r ) � two-time response = φ ( s , r ) � δ h ( s , 0 ) h =0 � t : observation time causality condition t > s for responses s : waiting time a) system at equilibrium : fluctuation-dissipation theorem Nyquist 28, Kubo 66 R ( t − s ; r ) = 1 ∂ C ( t − s ; r ) , T : temperature T ∂ s b) far from equilibrium : C and R independent ! The fluctuation-dissipation ratio ( fdr ) Cugliandolo, Kurchan, Parisi ’94 TR ( t , s ) X ( t , s ) := ∂ C ( t , s ) /∂ s measures the distance with respect to equilibrium : X eq = X ( t − s ) = 1

  9. Dynamical scaling & ageing : 3 D Ising model, T < T c dynamical scaling no time-translation invariance scaling regime : t , s ≫ τ micro and t − s ≫ τ micro

  10. Scaling regime : t , s ≫ τ micro and t − s ≫ τ micro � t � � t � s , | r | z s , | r | z C ( t , s ; r ) = s − b f C , R ( t , s ) = s − 1 − a f R t − s t − s asymptotics : f C ( y , 0) ∼ y − λ C / z , f R ( y , 0) ∼ y − λ R / z for y ≫ 1 λ C : autocorrelation exponent, λ R : autoresponse exponent, z : dynamical exponent, a , b : ageing exponents * exponents λ C , R usually from independent renormalisations, * but initial conditions can imply scaling relations Question : what about the form of these universal scaling functions ?

  11. Theoretical formulation Langevin equation (model A of Hohenberg-Halperin 77 ) ∂ t = ∆ φ − δ V [ φ ] 2 M ∂φ + η δφ order-parameter φ ( t , r ) non-conserved M : kinetic co´ efficient V : Landau-Ginsbourg potential η : gaussian thermal noise, centered and with variance � η ( t , r ) η ( t ′ , r ′ ) � = T / M δ ( t − t ′ ) δ ( r − r ′ ) fully disordered initial conditions (centered gaussian noise) ? interesting symmetries of NOISY Langevin equations ?

  12. Example : how to find these scaling forms → mean-field Langevin eq. for magn. order parameter m ( t ) drop spatial dependencies d m ( t ) = 3 λ 2 m ( t ) − m ( t ) 3 + η ( t ) , � η ( t ) η ( s ) � = 2 T δ ( t − s ) d t ole parameter λ 2 : contrˆ (1) λ 2 > 0 : T < T c , (2) λ 2 = 0 : T = T c , (3) λ 2 < 0 : T > T c two-time observables : response R ( t , s ), correlation C ( t , s ) � � R ( t , s ) = δ � m ( t ) � = 1 � 2 T � m ( t ) η ( s ) � , C ( t , s ) = � m ( t ) m ( s ) � � δ h ( s ) h =0 mean-field equation of motion (cumulants neglected) : � � λ 2 − v ( t ) ∂ t R ( t , s ) = 3 R ( t , s ) + δ ( t − s ) � � λ 2 − v ( s ) ∂ s C ( t , s ) = 3 C ( t , s ) + 2 TR ( t , s ) � � λ 2 − v ( t ) with variance v ( t ) = � m ( t ) 2 � , v ( t ) = 6 ˙ v ( t )

  13. if λ 2 ≥ 0 : fluctuations persist if λ 2 < 0 : fluctuations disappear in the long-time limit t , s → ∞ : ( t > s )   ; λ 2 > 0  2 min( t , s ) 1   � � ; λ 2 = 0 s s / t R ( t , s ) ≃ s / t ; C ( t , s ) ≃ T   ; λ 2 < 0  (3 | λ 2 | ) e − 3 | λ 2 | | t − s | e − 3 | λ 2 | ( t − s ) 1 fluctuation-dissipation ratio measures distance from equilibrium Cugliandolo, Kurchan, Parisi 94  ; λ 2 > 0 1 / 2 + O ( e − 6 λ 2 s )  X ( t , s ) = TR ( t , s ) ; λ 2 = 0 ∂ s C ( t , s ) ≃ 2 / 3  ; λ 2 < 0 1 + O ( e −| λ 2 | | t − s | ) relaxation far from equilibrium, when X � = 1, if λ 2 ≥ 0 ( T ≤ T c )

  14. Stochastic field-theory Langevin equations do not have non-trivial dynamical symmetries ! Galilei-invariance is broken by interactions with the thermal bath compare results of deterministic symmetries to stochastic models ? go to stochastic field-theory, action Janssen 92, de Dominicis,. . . � � � φ 2 − J [ φ, � φ (2 M ∂ t − ∆) φ + � � � φ t =0 C init � � φ V ′ [ φ ] φ ] = − T φ t =0 � �� � � �� � J 0 [ φ, � φ ] : deterministic + J b [ � φ ] : noise ( b ruit) � C ( t , s ) = � φ ( t ) φ ( s ) � , R ( t , s ) = � φ ( t ) � φ : response field ; φ ( s ) � � D φ D � φ A [ φ, � φ ] exp( −J 0 [ φ, � averages : � A � 0 := φ ]) masses : M φ = −M � φ

  15. Theorem : IF J 0 is Galilei- and spatially translation-invariant, then Bargman superselection rules Bargman 54 � � φ 1 · · · φ n � φ 1 · · · � φ m 0 ∼ δ n , m Illustration : computation of a response function Picone & mh 04 � � � φ ] � φ ( s ) e −J b [ � φ ( t ) � φ ( t ) � R ( t , s ) = φ ( s ) = 0 � � φ ( t ) � = φ ( s ) 0 = R 0 ( t , s ) Bargman rule = ⇒ response function does not depend on noise ! left side : computed in stochastic models right side : local scale-symmetry of deterministic equation Comparison of results of assumed deterministic age ( d )-symmetry with explicit stochastic models/experiments justified .

  16. Correlation functions for z = 2 find C ( t , s ) = � φ ( t ) φ ( s ) � = � φ ( t ) φ ( s ) e −J b [ � φ ] � 0 from Bargman rule � a 0 R d d R R (3) C ( t , s ) = 0 ( t , s , 0; R ) initial 2 � ∞ � + T R d d R R (3) d u 0 ( t , s , u ; R ) thermal 2 M 0 � � R (3) φ ( t , y ) φ ( s , y ) � φ 2 ( u , r + y ) 0 ( t , s , u ; r ) = 0 sch -invariance fixes three-point R (3) function up to an unknown 0 ⇒ how to obtain a prediction for f C ( y ) ? scaling function Ψ = Theorem : LSI with z = 2 = ⇒ λ C = λ R Picone & MH 04 agrees with a different RG argument of Bray and with all models Conclusion : concentrate on dynamical symmetries of ‘deterministic part’

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend