non oscillation neutrino physics
play

Non-Oscillation Neutrino Physics Jason Detwiler Lawrence Berkeley - PowerPoint PPT Presentation

Non-Oscillation Neutrino Physics Jason Detwiler Lawrence Berkeley National Laboratory DPF 2009, Detroit, MI July 31, 2009 Questions What is the mass scale? What is the hierarchy? Does = ? Normal Inverted What are the


  1. Non-Oscillation Neutrino Physics Jason Detwiler Lawrence Berkeley National Laboratory DPF 2009, Detroit, MI July 31, 2009

  2. ν Questions • What is the mass scale? • What is the hierarchy? • Does ν = ν ? Normal Inverted • What are the precise oscillation parameters? • Is θ 13 > 0? • Is CP violated in the ν sector? • Do sterile ν exist? • What can ν tell us about From presentation by S. King at UKNF (Dec 2005), available at the sun, Earth, SN, C ν B, ... http://hepunx.rl.ac.uk/uknf/2005-05-04/uknf-sfk-pheno.ppt

  3. Kinematic and Cosmological Experiments

  4. Kinematic Measurements tritium experiments

  5. KATRIN Monitor Provide stable source tritium column Transport electrons Reject low-energy Precise energy selection recycle tritium electrons of electrons parameters density Rear Source Trans/pump Pre-spectrometer Main spectrometer Detector � e 3 H 10 3 e - /s 1 e - /s 10 10 e - /s 10 10 e- /s e - e - e - e - � -decay 1.7 x 10 11 Bq Si pin (0.3 mT) diode 3 He 3 He 3 He 3•10 -3 mbar 10 -11 mbar 10 -11 mbar ± 1 kV -18.4 kV -18.574 kV B = 3 T B = 6 T 70 m Δ E = B min /B max x 18.6 keV = 93 eV → m ν < 200 meV

  6. Neutrino Mass Scale kinematic

  7. KATRIN KATRIN

  8. MARE • 187 Re: • E 0 = 2.47 keV, lowest in nature → higher statistics near endpoint • large natural abundance: 62.8% • AgReO 4 crystal bolometry: • Δ E < 30 eV (target: 10 eV) • pileup is problematic → small crystals

  9. MARE • MANU single crystal: m ν < 20 eV • MIBETA 10 detector array: m v < 15 eV • MARE I / MIBETA 2 • 288 element array under construction (taking data now?) • sensitivity to m ν < 2 eV • MARE II • up to 50k elements • sensitivity to m ν < 0.2 eV

  10. Cosmological Limits K. Ichikawa, J. Phys.: Conf. Ser. 120 , 022004 (2008) E. Komatsu et al. , ApJS 180 , 330 (2009) • Robust limit Σ m ν < ~0.6 eV due to thermodynamics of last scattering surface • Can get stronger but less robust limits near Σ m ν < ~0.2 eV by adding constraints from Ly α forest and galaxy clustering data • Stronger limits will require treatment of mass splittings - see arXiv:0907.1917

  11. Double-Beta Decay Experiments

  12. ⎞ | ⎠ ⎛ | ⎝ ⎞ | ⎠ | ⎝ ⎛ Majorana Neutrinos ν L m LM (m D ) T L = ½ ( ν Lc ν R ) + h.c. ν Rc m D m RM Two classes of eigen- ν : ν 1 ≈ ( ν L - ν Lc ) + (m D /m RM )( ν R - ν Rc ) m 1 ≈ (m D ) 2 / m RM ν 2 ≈ ( ν R + ν Rc ) + (m D /m RM )( ν L + ν Lc ) m 2 ≈ m RM “Seesaw” mechanism 12

  13. Majorana Neutrinos ν = ν → Lepton number violation → Leptogenesis Matter-Antimatter Asymmetry: Sakharov conditions* • Baryon number violation / baryogenesis • C and CP violation • Interactions out of thermal equilibrium Double-beta decay is currently the only practical method of determining if ν are Majorana particles. * A. D. Sakharov, JETP 5 , 24 (1967). 13

  14. Double-Beta Decay e - e - ν e ν e W - W - > > Nuclear Process (A, Z) (A, Z+2)

  15. Double-Beta Decay e - e - ν e ν e W - W - > > Nuclear Process (A, Z) (A, Z+2) e - e - ν i ν i U ei U ei W - W - T ½ 0 ν = ( G 0 ν | M 0 ν | 2 〈 m ββ 〉 2 ) -1 > > Nuclear Process (A, Z) (A, Z+2) 〈 m ββ 〉 ≡ ⎮ Σ m i U ei2 ⎮

  16. Double-Beta Decay 3 3 10 10 2 2 10 10 [meV] [meV] Inverted 10 10 � � � � � � m m � � Normal 1 1 -1 -1 10 10 3 3 2 2 10 10 10 10 1 1 10 10 Lightest Lightest mass [meV] mass [meV] � �

  17. Claimed Observation Klapdor Kleingrothaus et al ., Mod. Phys. Lett. A 21 (2006) p 1547. 71.7 kg y T 1/2 = (2.23 +0.44 ) x 10 25 y − 0.31 significance ~6 σ 〈 m ββ 〉 < ~0.15-0.6 eV

  18. Double-Beta Decay 3 3 10 10 Claimed signal in 76 Ge: Mod. Phys. Lett. A 21 (2006) p 1547. 2 2 10 10 [meV] [meV] Inverted 10 10 � � � � � � m m � � Normal 1 1 -1 -1 10 10 3 3 2 2 10 10 10 10 1 1 10 10 Lightest Lightest mass [meV] mass [meV] � �

  19. Double-Beta Decay 3 3 10 10 Disfavored by 0 νββ Claimed signal in 76 Ge: Mod. Phys. Lett. A 21 (2006) p 1547. 2 2 10 10 [meV] [meV] Inverted 10 10 � � � � � � m m � � Normal 1 1 -1 -1 10 10 3 3 2 2 10 10 10 10 1 1 10 10 Lightest Lightest mass [meV] mass [meV] � �

  20. Double-Beta Decay 3 3 10 10 Disfavored by 0 νββ Claimed signal in 76 Ge: Mod. Phys. Lett. A 21 (2006) p 1547. 2 2 10 10 [meV] [meV] Inverted Disfavored by cosmology 10 10 � � � � � � m m � � Normal 1 1 -1 -1 10 10 3 3 2 2 10 10 10 10 1 1 10 10 Lightest Lightest mass [meV] mass [meV] � �

  21. Double-Beta Decay 3 3 10 10 Disfavored by 0 νββ Claimed signal in 76 Ge: Mod. Phys. Lett. A 21 (2006) p 1547. 2 2 10 10 [meV] [meV] Inverted Disfavored by cosmology 10 10 � � � � � � m m � � Normal 1 1 -1 -1 10 10 3 3 2 2 10 10 10 10 1 1 10 10 Lightest Lightest mass [meV] mass [meV] � �

  22. Double-Beta Decay 3 3 10 10 Disfavored by 0 νββ Claimed signal in 76 Ge: Mod. Phys. Lett. A 21 (2006) p 1547. 2 2 10 10 [meV] [meV] Inverted Disfavored by cosmology 10 10 � � � � � � m m � � Normal 1 1 -1 -1 10 10 3 3 2 2 10 10 10 10 1 1 10 10 Lightest Lightest mass [meV] mass [meV] � �

  23. Backgrounds 76 Ge 23

  24. Nuclear Matrix Elements 76 Ge 82 Se 100 Mo 128 Te 130 Te 136 Xe 150 Nd 154 Sm Barea and Iachello, Phys. Rev. C 79 , 044301 (2009).

  25. Multiple Measurements V. M. Gehman and S. R. Elliott, J. Phys. G 34 , 667 (2007). • Assumes a single dominant mechanism • Requires NME calculated to 20% • Correlations between NME must be considered (see arXiv:0905.1832 hep-ph)

  26. Source = Detector

  27. M AJORANA and GERDA • enr Ge array submersed in LAr • Modular enr Ge arrays in EFCu • Water cherenkov μ veto cryostats, passive and active shielding • D EMONSTRATOR : 30 kg enriched + • Phase I: ~18 kg (H-M/IGEX xtals) 30 kg natural PPC detectors • Phase II: +20 kg seg. or PPC xtals • Open exchange of knowledge and ideas (e.g. MaGe MC) • Intend to merge for 1-ton experiment using the best techniques See talk by Marino, this session

  28. GERDA • Construction progressing rapidly at LNGS • Phase 1 scheduled to start in early 2010. Sensitivity: 〈 m ββ 〉 < ~200-500 meV • Phase II R&D with highly segmented and “BEGe” detectors. Sensitivity: 〈 m ββ 〉 < ~80-200 meV

  29. CUORE See talk by Ejzak, this session TeO 2 bolometers • 750 kg TeO 2 (200 kg 130 Te) • Starting ~2012 in LNGS; first tower this winter • Sensitivity: 〈 m ββ 〉 < 15-80 meV

  30. See talk by Ejzak, this session CUORICINO 60 Co 18 kg ( 130 Te) y 〈 m ββ 〉 < ~0.2-0.7 meV U/Th surface α / β

  31. See talk by Ackerman, EXO-200 this session • 200 kg of 80% enr Xe • LXe TPC: collect ionization and scintillation for improved resolution • Under construction at WIPP • Sensitivity: 〈 m ββ 〉 < ~100-200 meV

  32. See talk by Ackerman, EXO-200 this session • 200 kg of 80% enr Xe • LXe TPC: collect ionization and scintillation for improved resolution • Under construction at WIPP • Sensitivity: 〈 m ββ 〉 < ~100-200 meV

  33. See talk by Ackerman, this session Full EXO • Tag the Ba final state • Tons of 136 Xe • Sensitivity: 〈 m ββ 〉 < 5-30 meV

  34. EXO-gas / NEXT 0 νββ e -

  35. COBRA • CdZnTe room temp semiconductors • 4 x 4 array of 1 cm 3 crystals at LNGS J.V. Dawson et al. , arXiv:0902.3582

  36. KING COBRA • 40 x 40 x 40 array of coincidence pixelated crystals • Enrich to 90% in 116 Cd • Sensitivity: 〈 m ββ 〉 < 20-100 meV

  37. Scintillator Experiments

  38. SNO+ LAB, 0.1% loaded Sensitivity (nom. NME): with nat Nd → 50 kg 〈 m ββ 〉 < ~100 meV

  39. KamLAND+ • Central 1.4 m radius LS balloon loaded with 200 kg 136 Xe • Sensitivity: 136 Xe + 〈 m ββ 〉 < ~100 meV LS • 136 Xe installation as early as 2011

  40. CANDLES CANDLES II

  41. CANDLES III 地下 • 96 crystals, 305 kg • FutureR&D : 48 Ca enrichment via crown ether

  42. Source ≠ Detector Tracking Detectors

  43. NEMO-3 Segmented Modular thin calorimeter ββ source foil High granularity tracking volume 100 Mo 100 Mo

  44. NEMO-3: 100 Mo 〈 m ββ 〉 < 0.5-1 eV 100 Mo 100 Mo SSD confirmation

  45. SuperNEMO • Modular design • 100 kg 82 Se • Likely in Modane • Demonstrator: 7 kg 82 Se 〈 m ββ 〉 < ~200-500 meV

  46. Other ββ Tracking R&D OPERA MOON DCBA TGV

  47. Other ββ Tracking R&D OPERA MOON � � 10 µ m DCBA TGV

  48. Summary • Kinematic and cosmological tests will explore the quasi-degenerate region in the next ~5 years • Klapdor-Kleingrothaus et al . claimed 0 νββ signal will be tested within several years • Inverted hierarchy within reach for several isotopes in the current / next generation detectors

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend