nmsugra lhc dark matter
play

NmSuGra, LHC & dark matter Csaba Balazs Emerald Univercity, - PowerPoint PPT Presentation

NmSuGra, LHC & dark matter Csaba Balazs Emerald Univercity, Land of OZ Balazs, Carter PRD78 055001 (0808.0770) Lopez-Fogliani, Roszkowski, Ruiz de Austri, Varley PRD80 095013 (0906.4911) Balazs, Carter JHEP03 016 (0906.5012) C. Balzs,


  1. NmSuGra, LHC & dark matter Csaba Balazs Emerald Univercity, Land of OZ Balazs, Carter PRD78 055001 (0808.0770) Lopez-Fogliani, Roszkowski, Ruiz de Austri, Varley PRD80 095013 (0906.4911) Balazs, Carter JHEP03 016 (0906.5012) C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb Galilei Institute 11 Jun 2010 | page 1/33

  2. The idea Constrain the simplest supersymmetric models using experiments Use smart statistics to obtain the maximal info about the model Determine future model detectability based on present data Confirm/rule out the simplest models (and repeat for nsimplest?) C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb Galilei Institute 11 Jun 2010 | page 2/33

  3. The results (for NmSuGra) There's a beautiful complementarity between the LHC and direct dark matter detection experiments C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb Galilei Institute 11 Jun 2010 | page 3/33

  4. Outline Next-to-minimal supersymmetric standard model Supergravity Parameter extraction: Reverend Bayes Posterior probabilities: Fryer Occam LHC detectability Dark matter direct detection C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb Galilei Institute 11 Jun 2010 | page 4/33

  5. Supersymmetric models are robust They explain the origin of naturalness: Higgsinos Ø Higgs mass protected by chiral symmetry (inertial) mass: SUSY breaking & radiative dynamics Ø EWSB tree d m Z & loop corrections Ø m h d 135 GeV light Higgs boson: m h dark matter: conserved R = ( - 1) 3 H B - L L + 2 S Ø LSP is a stable WIMP baryonic matter: baryo- or lepto-genesis Ø baryon asymmetry gauge unification: sparticle loops Ø unification w/ M GUT ~ 10 16 GeV gravity: gauged supersymmetry Ø supergravity and more experimental and theoretical puzzles unanswered by the standard models of particle & astrophysics C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb Galilei Institute 11 Jun 2010 | page 8/33

  6. The Minimal Supersymmetric Standard Model (MSSM) Minimal particle content: standard fields Ø superfields Supersymmetry & gauge symmetry Ø all interactions Standard electroweak symmetry breaking Ø particle masses Model parameters are the same as in the standard model (with 2 Higgs doublets) Superpotential ` U ` D ` E ` ` ` ` ` ` - y d H ` - y e H ` + m H W MSSM = y u H u ÿ Q d ÿ Q d ÿ L u ÿ H d C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb Galilei Institute 11 Jun 2010 | page 9/33

  7. The Minimal Supersymmetric Standard Model (MSSM) Minimal particle content: standard fields Ø superfields Supersymmetry & gauge symmetry Ø all interactions Standard electroweak symmetry breaking Ø particle masses Model parameters are the same as in the standard model (with 2 Higgs doublets) Superpotential ` U ` D ` E ` ` ` ` ` ` - y d H ` - y e H ` + m H W MSSM = y u H u ÿ Q d ÿ Q d ÿ L u ÿ H d Supersymmetry fl super-partner masses = particle masses C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb Galilei Institute 11 Jun 2010 | page 10/33

  8. Supersymmetry breaking However beautiful, attractive and smart SUSY is, she's broken! One of the simplest: minimal supergravity motivated model mSuGra universality at M GUT spin 0 (spartner) masses Ø M 0 M 1 ê 2 spin 1/2 (gaugino) masses Ø all tri-linear couplings Ø A 0 tan b = X H u \êX H d \ vacuum expectation values Ø electroweak symmetry breaking fl m 2 Ø sign( m ) è U è D è E è - y d A 0 H d ÿ Q è - y e A 0 H d ÿ L è + m B H u ÿ H d + hc + MSSM = y u A 0 H u ÿ Q � soft è è è è + M 1 ê 2 l * l † y 2 y i + 1 2 M 0 j i j C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb Galilei Institute 11 Jun 2010 | page 11/33

  9. Problems with the MSSM m problem ` ` W MSSM m H u ÿ H d unnatural ≠ EW size for m is not justified Little hierarchy problem SUSY stabilizes M EW , by protecting m h against O( M P ) fluctuations m h = cos 2 H 2 b L m Z J log J m SUSY 2 N + J 1 - NN 2 2 2 X t X t 2 + m EW 2 2 2 m t m SUSY 12 m SUSY D m h small if m SUSY ~ m t ¨ EW precision data Ø m SUSY ~ O(1 TeV) Electroweak fine-tuning problem dm Z max i ( 1 ) large in most constrained MSSM scenarios m Z dp i Dark matter fine-tuning problem max i ( 1 d W ) large in most constrained MSSM scenarios dp i W C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb Galilei Institute 11 Jun 2010 | page 14/33

  10. Singlet extensions of the MSSM Root of the m , hierarchy & fine-tuning problems is the Higgs sector extending the EWSB sector of the MSSM, problems are alleviated ` ` in the (n,N,S)MSSM the W m H u ÿ H d dynamically generated by ` H ` ` W l S u ÿ H d all these fields ( H i and S ) acquire vev.s at the weak scale little hierarchy and fine-tunings are also alleviated ` H ` ` ` 3 Next-to-minimal MSSM: W NMSSM = W MSSM,Y + l S 1 ÿ H 3 S 2 + k mSuGra Ø universality fixes all NMSSM parameters, but l 5 free parameters: M 0 , M 1 ê 2 , A 0 , tan b , l Single parameter extension of mSuGra solving several MSSM problems C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb Galilei Institute 11 Jun 2010 | page 15/33

  11. NmSuGra para count MP Discreet symmetries of super- & Kahler potentials: Z 3 ä Z 2 solve domain wall problem ` H ` ` ` 3 Next-to-minimal MSSM: W NMSSM = W MSSM + l S 1 ÿ H 3 S 2 + k New parameters X S \ , l , k , A l , A k , m S SUSY breaking mSuGra Ø universality: fixes A k = A l = A 0 9 parameters left M 0 , M 1 ê 2 , A 0 , X H 1 \ , X H 2 \ , X S \ , l , k , m S 3 minimization eq. & v 2 = X H 1 \ 2 + X H 2 \ 2 eliminates 4 para & tan b = X H 1 \êX H 2 \ , m = l X S \ exchanges b and m with 2 para Ø 5 free parameters: M 0 , M 1 ê 2 , A 0 , tan b , l Single parameter extension of mSuGra - no new dimensionful para.s C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb Galilei Institute 11 Jun 2010 | page 16/33

  12. The logic of science: How NOT to discover SUSY A SUSY model parametrized by P = { p 1 , ..., p n } predicts an experimental outcome D = { d 1 , ..., d n } Assume that the LHC measures the predicted D! Ask the simplest question: Has SUSY been discovered? It's (very-very) tempting to answer: Yes! C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb Galilei Institute 11 Jun 2010 | page 17/33

  13. The logic of science: How NOT to discover SUSY A SUSY model parametrized by P = { p 1 , ..., p n } predicts an experimental outcome D = { d 1 , ..., d n } Assume that the LHC measures the predicted D! Ask the simplest question: Has SUSY been discovered? In reality the answer is: No! Because P fl D does NOT imply D fl P or in terms of conditional probabilities  (P|D) ∫  (D|P) where  (P|D) is a measure of the plausibility that P is true given D C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb Galilei Institute 11 Jun 2010 | page 18/33

  14. How to extract parameters The correct relation between conditional probabilities is Bayes theorem:  (P|D)  (D) =  (D|P)  (P)  (P|D) posterior distribution - this is what we want to know  (D) evidence - here only plays the role of normalization  (D|P) likelihood function - probability that D is measured given P 2 /2)/  (D|P) = exp( - c i 2 p s i i 2 = ( d i - t i (p i ) ) 2 /( s i ,exp 2 2 ) i=1...N data points c i + s i ,the  (P) prior, describes the a-priori (D independent) distribution of P for para extraction have been shown to be close to Jeffrey's C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb Galilei Institute 11 Jun 2010 | page 19/33

  15. Posterior distributions Marginalized posteriors  (p i |D) = Ÿ  (P|D) ¤ j ∫ i „ p j i, j = 1, ..., N parameters  (p i ,p j |D) = Ÿ  (P|D) ¤ k ∫ i, j „ p k i, j, k = 1, ..., N parameters are probability distributions of the parameters Marginalization implements Occam's razor  (p i |D) = Ÿ  (P|D) ¤ j ∫ i „ p j = Ÿ  (D|P)  (P)/  (D) ¤ j ∫ i „ p j where 1 = Ÿ  (D|P)  (P)/  (D) ¤ j „ p j and 1 = Ÿ  (P) ¤ j „ p j A model with a fewer parameters has a higher prior density leading to a higher posterior (assuming same likelihood) C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb Galilei Institute 11 Jun 2010 | page 20/33

  16. Experimental input Experimental data, constraining supersymmetry, available today LEP lower limits on spartner, Higgs masses & cross sections è è (dozens of upper limits - most restrictive m h , m W 1 , m Z 1 ) as for LEP & upper limit on Br( B s Ø l + l - ) Tevatron Br( b Ø s g ), Br( B + Ø l + n l ), D M d , D M s , ... b fact. g m -2 anomalous magnetic moment of muon plays strong role: constraining high M 0 and M 1 ê 2 WMAP WIMP abundance upper limit very important: excluding significant para-space CDMS/Xe WIMP-proton elastic recoil C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb Galilei Institute 11 Jun 2010 | page 21/33

  17. Probability distributions for input para C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb Galilei Institute 11 Jun 2010 | page 22/33

  18. Probability maps for input para C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb Galilei Institute 11 Jun 2010 | page 23/33

  19. Probability maps for input para è coann., h funnels, FP, ... mSuGra features can be identified: t C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb Galilei Institute 11 Jun 2010 | page 24/33

  20. An old mSuGra movie ... è coann., h funnels, FP, ... mSuGra features: t C. Balázs, Monash U., Melbourne | NmSuGra, LHC & DM.nb Galilei Institute 11 Jun 2010 | page 25/33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend