nichtnegativstellens tze for univariate polynomials
play

Nichtnegativstellenstze for Univariate Polynomials Victor Magron , - PowerPoint PPT Presentation

Nichtnegativstellenstze for Univariate Polynomials Victor Magron , CNRS Verimag Joint work with Mohab Safey El Din (INRIA/UPMC/LIP6) Markus Schweighofer (Konstanz University) JNCF f p 17 January 2017 p f t 4 ( 1 + x 2 + x 4 ) 1 x x


  1. Nichtnegativstellensätze for Univariate Polynomials Victor Magron , CNRS Verimag Joint work with Mohab Safey El Din (INRIA/UPMC/LIP6) Markus Schweighofer (Konstanz University) JNCF f p 17 January 2017 p ε f t 4 ( 1 + x 2 + x 4 ) 1 x x a t

  2. The Question(s) Let f ∈ R [ X ] and f � 0 on R Theorem [Hilbert 1888] There exist f 1 , f 2 ∈ R [ X ] s.t. f = f 12 + f 22 . Victor Magron Nichtnegativstellensätze for Univariate Polynomials 1 / 28

  3. The Question(s) Let f ∈ R [ X ] and f � 0 on R Theorem [Hilbert 1888] There exist f 1 , f 2 ∈ R [ X ] s.t. f = f 12 + f 22 . Proof. f = h 2 ( q + ir )( q − ir ) Victor Magron Nichtnegativstellensätze for Univariate Polynomials 1 / 28

  4. The Question(s) Let f ∈ R [ X ] and f � 0 on R Theorem [Hilbert 1888] There exist f 1 , f 2 ∈ R [ X ] s.t. f = f 12 + f 22 . Proof. f = h 2 ( q + ir )( q − ir ) Examples � √ � 2 � 2 � X + 1 3 1 + X + X 2 = + 2 2 √ � 2 � 2 X + 1 + X 2 + 1 5 1 + X + X 2 + X 3 + X 4 = + 4 √ √ √ � 2 � � � � 10 + 2 5 + 10 − 2 10 − 2 5 5 X + 4 4 Victor Magron Nichtnegativstellensätze for Univariate Polynomials 1 / 28

  5. The Question(s) Ordered real field K Let f ∈ K [ X ] with bitsize τ and f � 0 on R Existence Question Does there exist f i ∈ K [ X ] , c i ∈ K > 0 s.t. f = ∑ i c i f i 2 ? Victor Magron Nichtnegativstellensätze for Univariate Polynomials 2 / 28

  6. The Question(s) Ordered real field K Let f ∈ K [ X ] with bitsize τ and f � 0 on R Existence Question Does there exist f i ∈ K [ X ] , c i ∈ K > 0 s.t. f = ∑ i c i f i 2 ? Examples � √ � 2 � 2 � 2 � � X + 1 3 X + 1 + 3 1 + X + X 2 = 4 ( 1 ) 2 + = 1 2 2 2 √ � 2 � X 2 + 1 2 X + 1 + 5 1 + X + X 2 + X 3 + X 4 = + 4 √ √ √ � 2 � � � � 10 + 2 5 + 10 − 2 5 10 − 2 5 X + = ??? 4 4 Victor Magron Nichtnegativstellensätze for Univariate Polynomials 2 / 28

  7. Motivation Nichtnegativstellensätze (Nonnegativity certificates): Stability proofs of critical control systems (Lyapunov) Certified function evaluation [Chevillard et. al 11] Formal verification of real inequalities [Hales et. al 15]: C OQ H OL - LIGHT Victor Magron Nichtnegativstellensätze for Univariate Polynomials 3 / 28

  8. Related work Existence Question Does there exist f i ∈ K [ X ] , c i ∈ K > 0 s.t. f = ∑ i c i f i 2 ? f = c 1 f 12 + c 2 f 22 + c 3 f 32 + c 4 f 42 + c 5 f 52 [Pourchet 72] f = c 1 f 12 + · · · + c n f n 2 [Schweighofer 99] f = c 1 f 12 + · · · + c n + 3 f n + 32 [Chevillard et. al 11] n n 2 ) T G ( 1 x . . . x 2 ) G � 0 f = ( 1 x . . . x SOS with Exact LMIs Critical point methods [Greuet et. al 11] CAD [Iwane 13] Solving over the rationals [Guo et. al 13] � output size = τ O ( 1 ) 2 O ( n 3 ) Determinantial varieties [Henrion et. al 16] Victor Magron Nichtnegativstellensätze for Univariate Polynomials 4 / 28

  9. Contribution Ordered real field K Let f ∈ K [ X ] with bitsize τ and f � 0 on R Existence Question Does there exist f i ∈ K [ X ] , c i ∈ K > 0 s.t. f = ∑ i c i f i 2 ? Complexity Question What is the output bitsize of ∑ i c i f i 2 ? Victor Magron Nichtnegativstellensätze for Univariate Polynomials 5 / 28

  10. Contribution Two methods answering the questions: f = c 1 f 12 + · · · + c n f n 2 [Schweighofer 99] 3 n � Algorithm univsos1 with output size τ 1 = O (( n 2 ) 2 τ ) ∼ 3 n O (( n 2 ) 2 τ ) bit complexity f = c 1 f 12 + · · · + c n + 3 f n + 32 [Chevillard et. al 11] � Algorithm univsos2 with output size τ 2 = O ( n 4 τ ) ∼ O ( n 4 τ ) bit complexity Maple package https://github.com/magronv/univsos � Integration in RAGlib Victor Magron Nichtnegativstellensätze for Univariate Polynomials 5 / 28

  11. The Question(s) univsos1 : Quadratic Approximations univsos2 : Perturbed Polynomials Benchmarks Conclusion and Perspectives

  12. univsos1 : Outline [Schweighofer 99] f f ∈ K [ X ] and f > 0 Minimizer a may not be in K . . . x a f = 1 + X + X 2 + X 3 + X 4 √ 6 ) 1/3 6 ) 1/3 − 4 ( 135 + 60 5 − 1 a = √ 12 4 4 ( 135 + 60 Victor Magron Nichtnegativstellensätze for Univariate Polynomials 6 / 28

  13. univsos1 : Outline [Schweighofer 99] f f ∈ K [ X ] and f > 0 f t Minimizer a may not be in K . . . Find f t ∈ K [ X ] s.t. : deg f t � 2 f t � 0 x f � f t t a f = 1 + X + X 2 + X 3 + X 4 f − f t has a root t ∈ K √ 6 ) 1/3 6 ) 1/3 − 4 ( 135 + 60 5 − 1 a = √ 12 4 4 ( 135 + 60 f t = X 2 t = − 1 Victor Magron Nichtnegativstellensätze for Univariate Polynomials 6 / 28

  14. univsos1 : Outline [Schweighofer 99] f f ∈ K [ X ] and f > 0 Minimizer a may not be in K . . . f t Square-free decomposition: f − f t = gh 2 deg g � deg f − 2 x t a g > 0 f = 1 + X + X 2 + X 3 + X 4 f t = X 2 Do it again on g f − f t = ( X 2 + 2 X + 1 )( X + 1 ) 2 Victor Magron Nichtnegativstellensätze for Univariate Polynomials 6 / 28

  15. univsos1 : Algorithm [Schweighofer 99] Input : K , f � 0 ∈ K [ X ] of degree n � 2 Output : SOS decomposition with coefficients in K f f t ← parab ( f ) h , f t while ( g , h ) ← sqrfree ( f − f t ) deg f > 2 f ← g Victor Magron Nichtnegativstellensätze for Univariate Polynomials 7 / 28

  16. univsos1 : Local Inequality Lemma [Schweighofer 99] f t : = f ( t ) + f ′ ( t )( X − t ) + f ′ ( t ) 2 4 f ( t )( X − t ) 2 ∈ K [ X ] . f > 0, ∃ neighborhood U of local min a s.t. f t ( x ) � f ( x ) ∀ t , x ∈ U Victor Magron Nichtnegativstellensätze for Univariate Polynomials 8 / 28

  17. univsos1 : Local Inequality Lemma [Schweighofer 99] f t : = f ( t ) + f ′ ( t )( X − t ) + f ′ ( t ) 2 4 f ( t )( X − t ) 2 ∈ K [ X ] . f > 0, ∃ neighborhood U of local min a s.t. f t ( x ) � f ( x ) ∀ t , x ∈ U Proof. n = 2 Rolle’s Theorem n � 4 Taylor decomposition of f at t Victor Magron Nichtnegativstellensätze for Univariate Polynomials 8 / 28

  18. univsos1 : Global Inequality Lemma [Schweighofer 99] f t : = f ( t ) + f ′ ( t )( X − t ) + f ′ ( t ) 2 4 f ( t )( X − t ) 2 ∈ K [ X ] . f > 0, ∃ neighborhood U of smallest global min a s.t. f t ( x ) � f ( x ) ∀ t ∈ U , ∀ x ∈ R Victor Magron Nichtnegativstellensätze for Univariate Polynomials 9 / 28

  19. univsos1 : Global Inequality Lemma [Schweighofer 99] f t : = f ( t ) + f ′ ( t )( X − t ) + f ′ ( t ) 2 4 f ( t )( X − t ) 2 ∈ K [ X ] . f > 0, ∃ neighborhood U of smallest global min a s.t. f t ( x ) � f ( x ) ∀ t ∈ U , ∀ x ∈ R Proof. t = f ′ ( t ) 2 f ′′ n = 2 2 f ( t ) Taylor Decomposition of f at t Negative discriminant of f : f ′ ( t ) 2 − 4 f ( t ) f ′′ ( t ) < 0 2 Victor Magron Nichtnegativstellensätze for Univariate Polynomials 9 / 28

  20. univsos1 : Global Inequality Lemma [Schweighofer 99] f t : = f ( t ) + f ′ ( t )( X − t ) + f ′ ( t ) 2 4 f ( t )( X − t ) 2 ∈ K [ X ] . f > 0, ∃ neighborhood U of smallest global min a s.t. f t ( x ) � f ( x ) ∀ t ∈ U , ∀ x ∈ R Proof. f − f t = ∑ n i = 0 a it X i U = [ a − ǫ , a + ǫ ] (Local Ineq) n � 4 � � | a nt | , . . . , | a ( n − 1 ) t | 1, | a 0 t | Cauchy bound: C t : = max � C | a nt | Smallest global min a : � 5 cases ( − ∞ , C ] [ − C , a − ǫ ] [ a − ǫ , a ) [ a , C ) [ C , ∞ ) Victor Magron Nichtnegativstellensätze for Univariate Polynomials 9 / 28

  21. univsos1 : Nichtnegativstellensätz Theorem [Schweighofer 99] Let K be an ordered real field, f ∈ K [ X ] , deg f = n . f � 0 on R ⇔ ∃ c i ∈ K � 0 , f i ∈ K [ X ] s.t. f = c 1 f 12 + · · · + c n f n 2 Victor Magron Nichtnegativstellensätze for Univariate Polynomials 10 / 28

  22. univsos1 : Nichtnegativstellensätz Theorem [Schweighofer 99] Let K be an ordered real field, f ∈ K [ X ] , deg f = n . f � 0 on R ⇔ ∃ c i ∈ K � 0 , f i ∈ K [ X ] s.t. f = c 1 f 12 + · · · + c n f n 2 Proof by induction. n = 2 f = a 2 X 2 + a 1 X + a 0 = a 2 ( X + a 1 2 a 2 ) 2 + ( a 0 − a 12 4 a 2 ) Discriminant a 12 − 4 a 2 a 0 � 0 Victor Magron Nichtnegativstellensätze for Univariate Polynomials 10 / 28

  23. univsos1 : Nichtnegativstellensätz Theorem [Schweighofer 99] Let K be an ordered real field, f ∈ K [ X ] , deg f = n . f � 0 on R ⇔ ∃ c i ∈ K � 0 , f i ∈ K [ X ] s.t. f = c 1 f 12 + · · · + c n f n 2 Proof by induction. n � 4 ⇒ f = g h 2 f not square-free = ⇒ f > 0, ∃ f t � 0 s.t. f − f t = g ( X − t ) 2 f square-free = Victor Magron Nichtnegativstellensätze for Univariate Polynomials 10 / 28

  24. univsos1 : Bitsize of t Lemma Let 0 < f ∈ Z [ X ] with bitsize τ , deg f = n . Let t ∈ Q , f t : = f ( t ) + f ′ ( t )( X − t ) + f ′ ( t ) 2 4 f ( t ) ( X − t ) 2 s.t. f − f t > 0. Then τ ( t ) = O ( n 2 τ ) Victor Magron Nichtnegativstellensätze for Univariate Polynomials 11 / 28

  25. univsos1 : Bitsize of t Lemma Let 0 < f ∈ Z [ X ] with bitsize τ , deg f = n . Let t ∈ Q , f t : = f ( t ) + f ′ ( t )( X − t ) + f ′ ( t ) 2 4 f ( t ) ( X − t ) 2 s.t. f − f t > 0. Then τ ( t ) = O ( n 2 τ ) Proof. Bitsize B of polynomials describing: { t ∈ Q | ∀ x ∈ R , f ( t ) 2 + f ′ ( t ) f ( t )( x − t ) + f ′ ( t ) 2 ( x − t ) 2 � 4 f ( t ) f ( x ) } B = O ( n 2 τ ) Quantifier elimination/CAD [BPR 06]: Victor Magron Nichtnegativstellensätze for Univariate Polynomials 11 / 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend