new transportable atom sensors and their applications to
play

New transportable atom sensors and their applications to space - PowerPoint PPT Presentation

New transportable atom sensors and their applications to space experiments P . Bouyer Source Atomiques Cohrentes et Interfromtrie Atomique Groupe dOptique Atomique Laboratoire Charles Fabry de lInstitut dOptique Campus


  1. New transportable atom sensors and their applications to space experiments P . Bouyer Source Atomiques Cohérentes et Interférométrie Atomique Groupe d’Optique Atomique Laboratoire Charles Fabry de l’Institut d’Optique Campus Polytechnique, France

  2. Atom Interferomtry : basic principle Atom Inertial Base (gyro + accelerometer) Coherent Atom Sensors I.C.E. : Tranportable Sensor for 0g tests Some possible space applications

  3. Atom accelerometer  Based on Raman pulses atom optics  π /2 − π − π /2 (Kasevich & Chu 1991) : interferometer  π /2 : create a superposition of 2 different velocities : beam splitter  π : exchanges velocities : mirror  We use an (optical) ruler to precisely measure the (atomic) test mass position  Similar to falling corner cube gravimeter (FG5)  FG 5 : Laser phase is read by optical interferometry  Atom sensor : Laser phase is read by atom interferometry.  An Atom Interferometer “reads” the position of an atom proof mass using some kind of “laser telemetry”  Velocity measurement improves with time  Acceleration measurement improves with time  Absolute accuracy  Example : watt balance for kg definition  Performances Similar to best sensors  Extension to low frequency September 06 Transportable Atom Sensors ... - P. BOUYER 3

  4. Atom accelerometer  Based on Raman pulses atom optics  π /2 − π − π /2 (Kasevich & Chu 1991) : interferometer  π /2 : create a superposition of 2 different velocities : beam splitter  π : exchanges velocities : mirror  We use an (optical) ruler to precisely measure the (atomic) test mass position  Similar to falling corner cube gravimeter (FG5)  FG 5 : Laser phase is read by optical interferometry  Atom sensor : Laser phase is read by atom interferometry.  An Atom Interferometer “reads” the position of an atom proof mass using some kind of “laser telemetry”  Velocity measurement improves with time  Acceleration measurement improves with time  Absolute accuracy  Example : watt balance for kg definition  Performances Similar to best sensors  Extension to low frequency September 06 Transportable Atom Sensors ... - P. BOUYER 3

  5. Atom Gyrometer  3 Raman pulses separated in time  Atoms with an initizal velcity perpendicular to lasers  sensitivity to rotation = coriolis acceleration September 06 Transportable Atom Sensors ... - P. BOUYER 4

  6. Atom Interferomtry : basic principle Atom Inertial Base (gyro + accelerometer) Coherent Atom Sensors I.C.E. : Tranportable Sensor for 0g tests Some possible space applications

  7. Cold Atom Inertial Base (SYRTE) O ne pair of R am an 30 cm lasers sw itched on 3 tim es 50 cm D etections M axim um interaction tim e : 80 m s 3 rotation axes, 2 acceleration axes C ycling frequency 2H z S ensitivity (10 6 at): M agneto-O ptical Traps • gyroscope : 3,5 10 -7 rad.s -1 .H z -1/2 Launching velocity: 2.4 m .s -1 • accelerom eter : 8 10 -7 m .s -2 .H z -1/2 H orizontal velocity: 0.33 m .s -1 September 06 Transportable Atom Sensors ... - P. BOUYER 6

  8. Ultimate limits for atom accelerometers ? Nyman et al., cond-mat/0605057 and App. Phys. B 84(4) 673 Metrology  Accelerometer precision of a few 10 -10 m/s 2 per shot (5 s interrogation time)  Limit due to Raman-laser phase noise  Noise comes from quartz oscillator It is possible to go to a few seconds of interrogation time  Well suited for space applications  Best atom source ? September 06 Transportable Atom Sensors ... - P. BOUYER 7

  9. Atom Interferomtry : basic principle Atom Inertial Base (gyro + accelerometer) Coherent Atom Sensors I.C.E. : Tranportable Sensor for 0g tests Some possible space applications

  10. Why Coherent Source Le Coq et al., App. Phys. B 84(4) 1000 Température maximale ( µ K) 100  Ultra cold 10  Longer interrogation  Better signal to noise Sub Doppler 1  but lower flux ! 0.1 BEC  Atom Laser : space applications 0.01  Small source 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 0.01 0.1 1 10 Temps d'interrogation (s)  «New» Physics  Correlation, condensed matter September 06 Transportable Atom Sensors ... - P. BOUYER 9

  11. Gravitational “resonator” for BEC 2 resonance condition B ragg (or R am an) resonance O scillation resonance See C. Bordé’s Talk Impens, Bouyer, Bordé , App. Phys. B 84(4) September 06 Transportable Atom Sensors ... - P. BOUYER 10

  12. BEC : New generation of Interferometers September 06 Transportable Atom Sensors ... - P. BOUYER 11

  13. BEC : New generation of Interferometers  Heisenberg limited with number states  Compensates low atom number S/ N=10 6  Integrated interferometers  BEC on chips  «active» interferometers  Matter wave amplification» September 06 Transportable Atom Sensors ... - P. BOUYER 11

  14. A Guided Atom Laser W. Guerin et al., cond-mat/0607438  So far, RF outcoupled lasers from a magnetic trap  Once atom lasers are extracted, they are subjected to gravity  λ becomes quickly very small September 06 Transportable Atom Sensors ... - P. BOUYER 12

  15. A Guided Atom Laser W. Guerin et al., cond-mat/0607438 September 06 Transportable Atom Sensors ... - P. BOUYER 12

  16. A Guided Atom Laser W. Guerin et al., cond-mat/0607438  BEC in hybrid (magnetic+optical) trap  Focused Nd:YAG laser (red detuned: 1064 nm)  Anisotrop: 2,5 Hz × 360 Hz ( z R = 2.7 mm )  Waist position chosen with translational stage  It is possible to use RF outcouplig  RF extracted matter wave is guided in the optical trap  Large de Broglie wavelength (1 µm) September 06 Transportable Atom Sensors ... - P. BOUYER 12

  17. Atom Interferomtry : basic principle Atom Inertial Base (gyro + accelerometer) Coherent Atom Sensors I.C.E. : Tranportable Sensor for 0g tests Some possible space applications

  18. September 06 Transportable Atom Sensors ... - P. BOUYER 14

  19. ICE : Strategy  Use optical traps for “atom cavity”  Optical fields easilly switchable  No stray fields, only “diffusive effects”  Precision knowledge on position, velocity … Compact BEC source :  Crutial : e ffj cient loading scheme into the optical trap  Need powerfull laser September 06 Transportable Atom Sensors ... - P. BOUYER 15

  20. I. C. E. : structure Light Source Fibre optics (s) Doubled telecoms Atomic Physics Computing Control Chamber Man-machine Real-time interface Robust, flexible Measurement Camera, accelerometer September 06 Transportable Atom Sensors ... - P. BOUYER 16

  21. I. C. E. :Cube Box superstructure Suspend vacuum Damped (foam filled) chamber with ropes, Grooves for adding optics slings, chains anywhere in the volume Adjust tension Breadboard (low vibration) with turnbuckles 2 × 10 8 at. in <5s 87 Rb MOT, 10/02/200 6 September 06 Transportable Atom Sensors ... - P. BOUYER 17

  22. I. C. E. : Cubes (with atoms) Box superstructure Suspend vacuum Damped (foam filled) chamber with ropes, Grooves for adding optics slings, chains anywhere in the volume Adjust tension Breadboard (low vibration) with turnbuckles 2 × 10 8 at. in <5s 87 Rb MOT, 10/02/200 6 September 06 Transportable Atom Sensors ... - P. BOUYER 18

  23. Atom Interferomtry : basic principle Atom Inertial Base (gyro + accelerometer) Coherent Atom Sensors I.C.E. : Tranportable Sensor for 0g tests Some possible space applications

  24. Atoms sensors in space : missions General Relativity Mapping the Lense-Thirring effect around the earth. Equivalence Principle Testing deviations of the  gravitational law at short and long distances. Pioneer Anomaly Beyond Casimir Effect Mapping the gravitational potential  with absolute gravity gradiometers September 06 Transportable Atom Sensors ... - P. BOUYER 20

  25. Atoms sensors in space : missions General Relativity Mapping the Lense-Thirring effect around the earth. Equivalence Principle Testing deviations of the  gravitational law at short and long distances. Pioneer Anomaly Beyond Casimir Effect Mapping the gravitational potential  with absolute gravity gradiometers September 06 Transportable Atom Sensors ... - P. BOUYER 20

  26. Philippe BOUYER Robert NYMAN Gaël VAROQUAUX Jean-François CLEMENT Jean-Philippe BRANTUT F. Impens Arnaud LANDRAGIN Frank PEREIRA Christian BORDE Alexandre BRESSON Yannick BIDEL François DEYSAC P . Bouyer Pierre TOUBOUL Linda MONDIN Michel ROUZE Source Atomiques Cohérentes Jean MIGNOT et Interférométrie Atomique http://www. IFRAF.org/ http://www.atomoptic.fr/ http://www.ice-space.fr/ Groupe d’Optique Atomique Laboratoire Charles Fabry de l’Institut d’Optique Post-doctoral position available. See www.atomoptic.fr Campus Polytechnique, France

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend