new resul ts on griesmer codes and arcs assia rousseva so
play

NEW RESUL TS ON GRIESMER CODES AND ARCS Assia Rousseva Soa - PowerPoint PPT Presentation

NEW RESUL TS ON GRIESMER CODES AND ARCS Assia Rousseva Soa Universit y Ivan Landjev New Bulga rian Universit y ALCOMA 2015, Kloster Banz, 15.-20.03.2015 1. Linea r Co des over Finite Fields Linea r [ n,


  1. NEW RESUL TS ON GRIESMER CODES AND ARCS Assia Rousseva So�a Universit y Ivan Landjev New Bulga rian Universit y � ALCOMA 2015, Kloster Banz, 15.-20.03.2015 �

  2. 1. Linea r Co des over Finite Fields Linea r [ n, k ] q o de : C < F n , dim C = k - o de : d = min { d ( u , v ) | u , v ∈ C, u � = v } . - n - the length of C ; ⋄ q - k - the dimension of C ; ⋄ [ n, k, d ] q - d - the minimum distan e of C . � numb er of o dew o rds of (Hamming) w eight i � the sp e trum of C ⋄ A i � ALCOMA 2015, Kloster Banz, 15.-20.03.2015 � 1 ⋄ ( A i ) i ≥ 0

  3. The Main Problem in Co ding Theo ry . Optimize one of the pa rameters n , k , d , given the other t w o. - minimal length of a linea r o de over F q of dimension k and minimum distan e d ; - maximal dimension of a linea r o de over F q of length n and minimum distan e d ; n q ( k, d ) - maximal minimum distan e of a linea r o de over F q of length n and dimension k . K q ( n, d ) optimalit y with resp e t to n = optimalit y with resp e t to k and d D q ( n, k ) ⇒ � ALCOMA 2015, Kloster Banz, 15.-20.03.2015 � 2

  4. Griesmer b ound: Let C b e an [ n, k, d ] q - o de. Then ⋄ Theo rem. Given the integer k and the p rime p o w er q , Griesmer [ g q ( k, d ) , k, d ] q - k − 1 � o des exist fo r all su� iently la rge d . ⌈ d n q ( k, d ) ≥ g q ( k, d ) = q i ⌉ The p roblem of �nding the exa t value of n q ( k, d ) is solved fo r i =0 : k ≤ 8 fo r all d ; : k ≤ 5 fo r all d ; : k ≤ 4 fo r all d ; • q = 2 • q = 5 , 7 , 8 , 9 : k ≤ 3 fo r all d ; • q = 3 : k = 4 � four values of d fo r whi h n 5 (4 , d ) is not kno wn. • q = 4 � ALCOMA 2015, Kloster Banz, 15.-20.03.2015 � 3 • q = 5

  5. http://www.mi.s. os ak af u-u .a . jp / maruta/griesme r.h tm The Op en Cases fo r q = 5 , k = 4 103 � 104 (22 , 5) -a r 104 � 105 in PG(2 , 5) 203 � 204 (42 , 9) -a r d g 5 (4 , d ) n 5 (4 , d ) K K| H 204 � 205 in PG(2 , 5) 81 103 (103 , 22) 82 104 (104 , 22) 161 203 (203 , 42) 162 204 (204 , 42) � ALCOMA 2015, Kloster Banz, 15.-20.03.2015 � 4

  6. 2. Divisible and Quasidivisibl e Ar s A multiset in PG( k − 1 , q ) is a mapping ⋄ ( P ) � multipli it y of the p oint P . � P → N 0 , : K ( Q ) = � � multipli it y of the set Q . K : P → K ( P ) . ( P ) � the a rdinalit y of K . ⋄ K P oints, lines, ... ,hyp erplanes of multipli it y i a re alled i -p oints, i -lines, ... , -hyp erplanes. ⋄ Q ⊂ P P ∈Q K ( P ) � the numb er of hyp erplanes H with K ( H ) = i ⋄ K � the sp e trum of K ⋄ i � ALCOMA 2015, Kloster Banz, 15.-20.03.2015 � 5 ⋄ a i ⋄ ( a i ) i ≥ 0

  7. De�nition. ( n, w ) -a r in PG( k − 1 , q ) : a multiset K with 1) K ( P ) = n ; 2) fo r every hyp erplane H : K ( H ) ≤ w ; 3) there exists a hyp erplane H 0 : K ( H 0 ) = w . De�nition. ( n, w ) -blo king set in PG( k − 1 , q ) (o r ( n, w ) -minihyp er): a multiset K with 1) K ( P ) = n ; 2) fo r every hyp erplane H : K ( H ) ≥ w ; 3) there exists a hyp erplane H 0 : K ( H 0 ) = w . � ALCOMA 2015, Kloster Banz, 15.-20.03.2015 � 6

  8. De�nition. An ( n, w ) -a r K in PG( k − 1 , q ) is alled t -extendable, if there exists an ( n + t, w ) -a r K ′ in PG( k − 1 , q ) with K ′ ( P ) ≥ K ( P ) fo r every p oint . An 1-extendable a r is alled extendable. De�nition. An a r K in PG( k − 1 , q ) with K ( P ) = n and sp e trum ( a i ) is P ∈ P said to b e divisible with diviso r ∆ , ∆ > 1 , if a i = 0 fo r all i �≡ n (mod ∆) . De�nition. An a r K with K ( P ) = n and sp e trum ( a i ) is said to b e t - quasidivisible with diviso r ∆ , ∆ > 1 , (o r t -quasidivisible mo dulo ∆ ) if a i = 0 fo r all i �≡ n, n + 1 , . . . , n + t (mod ∆) . � ALCOMA 2015, Kloster Banz, 15.-20.03.2015 � 7

  9. 3. Linea r o des as multisets of p oints - o de C ( n, w = n − d ) -a r K of full length in PG( k − 1 , q ) , wt( u ) = u a hyp erplane H with K ( H ) = n − u , [ n, k, d ] q ⇔ extendable [ n, k, d ] q - o de C extendable ( n, n − d ) -a r K divisible [ n, k, d ] q - o de divisible ( n, n − d ) -a r in PG( k − 1 , q ) 0 � = u ∈ C ⇔ fo r all i �≡ 0 (mod ∆) fo r all i �≡ n (mod ∆) ⇔ -quasidivisible [ n, k, d ] q - o de -quasidivisible ( n, n − d ) -a r fo r all i �≡ − j (mod q ) in PG( k − 1 , q ) a i = 0 fo r all ⇔ A i = 0 a i = 0 t ⇔ t � ALCOMA 2015, Kloster Banz, 15.-20.03.2015 � 8 A i = 0 j ∈ { 0 , 1 , . . . , t } i �≡ n + j (mod q )

  10. Griesmer a r s: a r s asso iated with o des meeting the Griesmer b ound Griesmer [ n, k, d ] q o des Griesmer ( n, w ) -a r s in PG( k − 1 , q ) ⋄ ⇔ n = � k − 1 n = � k − 1 If d = n − w = sq k − 1 − ε k − 2 q k − 2 − . . . − ε 1 q − ε 0 , and i =0 ⌈ d/q i ⌉ i =0 ⌈ ( n − w ) /q i ⌉ maximal multipli it y of a subspa e of o dimension i , i = 0 , . . . , k − 1 . Then ⋄ w i := where v k = ( q k − 1) / ( q − 1) . w i = sv k − i − ε k − 2 v k − i − 1 − . . . − ε i +1 v 2 − ε i v 1 , � ALCOMA 2015, Kloster Banz, 15.-20.03.2015 � 9

  11. 4. Some Extension Results Theo rem. (R. Hill, P . Lizak, 1995, geometri version) Let K b e a ( n, w ) -a r in with gcd( n − w, q ) = 1 . Let further K ( H ) ≡ n o r w (mod q ) fo r all hyp erplanes H . Then K is extendable to a divisible ( n + 1 , w ) -a r in PG( k − 1 , q ) . In pa rti ula r, every 1-quasidivisible a r with diviso r q is extendable. Theo rem. (T. Ma ruta, 2004, geometri version) Let K b e a 2-quasidivisible PG( k − 1 , q ) ( n, w ) -a r in PG( k − 1 , q ) , q ≥ 5 , o dd, with diviso r q . Then K is extendable to an ( n + 1 , w ) -a r in PG( k − 1 , q ) . � ALCOMA 2015, Kloster Banz, 15.-20.03.2015 � 10

  12. - t -quasidivisible ( n, w ) -a r in Σ = PG( k − 1 , q ) , i.e. fo r every hyp erplane , w e have K ( H ) ≡ n, n + 1 , . . . , n + t (mod q ) , where 0 < t < q is an integer onstant. De�ne an a r � in the dual spa e � ⋄ K H ⋄ K Σ where H is the set of all hyp erplanes of Σ . � H → N 0 , � K : � H → K ( H ) := n + t − K ( H ) (mod q ) . � ALCOMA 2015, Kloster Banz, 15.-20.03.2015 � 11

  13. Theo rem. Let K b e an ( n, w ) -a r in Σ = PG( k − 1 , q ) whi h is t -quasidivisible mo dulo q , t < q . Let fo r some a r � and c not ne essa rily di�erent hyp erplanes � then K � c � H i + � is c -extendable. In pa rti ula r, if � ontains a hyp K ′ erplane in its supp o rt then K is K = χ e extendable. i =1 H 1 , . . . , � K ′ H c Theo rem. Let � b e a subspa e of � of p ositive dimension. Then � K (mod q ) . K ( � S Σ S ) ≡ t � ALCOMA 2015, Kloster Banz, 15.-20.03.2015 � 12

  14. Theo rem. (Landjev, Rousseva, Sto rme, 2014) Let K b e a t -quasidivisible Griesmer a r in PG( k − 1 , q ) with pa rameters ( n, w ) , where Let further ε 0 = t, . . . ε k − 2 < √ q . Then K is t -extendable. d = n − w = sq k − 1 − ε k − 2 q k − 2 − . . . − ε 1 q − ε 0 . is a ( tv k − 1 , tv k − 2 ) -a r , where v k = q k − 1 is a sum of t hyp erplanes ⋄ � K q − 1 ⋄ � K � ALCOMA 2015, Kloster Banz, 15.-20.03.2015 � 13

  15. 5. ( t mod q ) -Ar s De�nition. An a r F is alled a ( t mod q )-a r if � all p oints have multipli it y ≤ t ; � all subspa es S of p ositive dimension have multipli it y F ( S ) ≡ t (mod q ) . Theo rem A. The sum of a ( t 1 mod q ) -a r s and a ( t 2 mod q ) -a r is a ( t mod q ) -a r with t = t 1 + t 2 . In pa rti ula r, the sum of t hyp erplanes in is a ( t mod q )-a r . � ALCOMA 2015, Kloster Banz, 15.-20.03.2015 � 14 PG( k − 1 , q )

  16. Theo rem B. Let F 0 b e a ( t mod q )-a r in a hyp erplane H ∼ = PG( k − 2 , q ) . of Σ = PG ( k − 1 , q ) . F o r a �xed p oint P ∈ Σ \ H , de�ne an a r F in Σ as follo ws: � F ( P ) = t ; � fo r ea h p oint Q � = P : F ( Q ) = F 0 ( R ) where R = � P, Q � ∩ H . Then the a r F is a ( t mod q ) -a r in PG( k − 1 , q ) of size q |F 0 | + t . De�nition. ( t mod q ) -a r s obtained b y Theo rem B a re alled lifted a r s. � ALCOMA 2015, Kloster Banz, 15.-20.03.2015 � 15

  17. F ( P ) = t P F ( Q ) = F 0 ( R ) Q R F 0 � ALCOMA 2015, Kloster Banz, 15.-20.03.2015 � 16 H ∼ = PG( k − 2 , q )

  18. : an a r in Σ = PG( k − 1 , q ) � the set of all hyp erplanes in Σ - a fun tion su h that σ ( F ( H )) is a non-negative integer fo r all H ∈ H . F The a r F σ in � H σ is alled the σ -dual of F . Σ � Theo rem C. Let F b e a ( t mod q ) -a r in PG(2 , q ) of size mq + t . Then the H → N 0 F σ : a r F σ with σ ( x ) = ( x − t ) /q is an (( m − t ) q + m, m − t ) -blo king set in the H → σ ( F ( H )) dual plane with line multipli ities m − t, m − t + 1 , . . . , m . � ALCOMA 2015, Kloster Banz, 15.-20.03.2015 � 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend