new methods for time series and panel econometrics
play

New Methods for Time Series and Panel Econometrics 1 6 00 0 H ig - PDF document

New Methods for Time Series and Panel Econometrics 1 6 00 0 H ig h e st 1 2 00 0 H igh 8 00 0 M id 4 00 0 Po o r Po o res t 0 0 3 0 60 9 0 1 20 15 0 Average Real per C apita Income over 1960-1989 with C ountry Groupings Peter C.


  1. New Methods for Time Series and Panel Econometrics 1 6 00 0 H ig h e st 1 2 00 0 H igh 8 00 0 M id 4 00 0 Po o r Po o res t 0 0 3 0 60 9 0 1 20 15 0 Average Real per C apita Income over 1960-1989 with C ountry Groupings Peter C. B. Phillips Cowles Foundation, Yale University IMF Seminar: September 29, 2003

  2. Seminar 2002 � Limitations of the Econometric Approach � Laws of Econometrics � Limits to Empirical Knowledge & Forecasting � Proximity Theorems � A Look to the Future � Online Econometric Services � Dynamic Panel Modeling � Estimation of Long Memory

  3. Outline � Dynamic Panels with Incidental Trends & Cross Section Dependence � Bias & Inconsistency � Adjusting for Bias � Homogeneity testing � Modeling & Handling Cross Section Dependence � Nonstationary Panel Models � Unit Roots, Near unit roots, incidental trends � Testing unit roots & CSD � Cointegration & spurious regression � Applications � Growth convergence & transitions � FH savings/investment regressions � Bias corrections – PPP & demand for gas

  4. Papers List of Relevant Papers • Phillips & Moon (1999). Linear regression limit theory for nonstationary panel data, Econometrica, 67, 1057- 1111. • Moon & Phillips (1999). Maximum likelihood estimation in panels with incidental trends. Oxford Bulletin of Economics and Statistics , 61,711–48. • Phillips & Sul (2003). Dynamic panel estimation and homogeneity testing under cross section dependence. Econometrics Journal , 6, 217-259. • Phillips & Sul (2003). Bias in Dynamic Panel Estimation with Fixed Effects, Incidental Trends and Cross Section Dependence. CFDP # 1438, Yale University • Moon, Perron & Phillips (2003). Incidental trends and the power of unit root tests. CFDP # 1435, Yale University http://cowles.econ.yale.edu/

  5. Dynamic Panel Models Dynamic Panel Models Latent variable equation    y i , t  1  2   u i , t , u i , t  iidN  0,  i y i , t     1,1  Panel Models  , M1: y i , t  y i , t  , M2: y i , t   i  y i , t  , M3: y i , t   i   i t  y i , t Initialization 2  i N  0, 1   2      1,1    y i ,0 . O p  1    1

  6. Dynamic Estimation Bias Estimation Bias Background & New Issues � Common autoregressive bias source & exacerbation with intercept and trend Orcutt (1949), Orcutt and Winokur (1969), Andrews (1993) � Panel autoregressive bias accentuated by pooling & effect of CS dependence Phillips & Sul (2003) � Panel autoregressive estimates inconsistent in presence of individual effects & incidental trends Nickell (1982), Neyman & Scott (1948), Moon & Phillips (1999) � Problems of Weak Instruments in IV & GMM estimation Hahn & Kuersteiner (2000), Moon & Phillips (2004)

  7. Weak Instrument Examples Weak Instrument Examples � Applied Microeconometrics: earnings & schooling regressions Angrist & Krueger (1991, 2001) � Panel Models with Near Unit Roots Hahn & Kuersteiner (2000) Moon & Phillips (2001, 2004) 1  c y it   i  y it  1  u it T 1  c  y it   y it  1   u it T Instrument is weak because y it  2 c  y it  1   i  T y it  2  u it How does this affect inference?

  8. Analysis of Firm Size Analysis of Firm size Gibrat’s Law (proportional effect) Z it  Z it  1  Z it  1 e it , i.e. z it  z it  1  e it Popular Empirical Formulation Sutton (1997), Hall & Mairesse (2000) z it   t  y it , y it   y it  1   it ,   1 Panel Model with Near Unit Root  g p t  c  z it   i   i T z it  1   it Moon & Phillips (2004) Implications   z it c   0 if c  0  z it  1 T

  9. Dynamic Estimation Bias Dynamic estimation bias Models M1, M2, M3: pooled estimator T N      t  1  i  1  it  1 u it y   t  1 T  i  1 N  it  1 2 y Asymptotic Bias M2 – Nickell (1981)      G   , T    1   T  1  O  T  2  plim N     Unit Root Case M2 3   1    p lim N     T  1 also holds for heterogeneous case: N  i 2   2 N  i  1 1 2    i 2 , E  u it lim N  

  10. Inconsistency for Model M2 Asymptotic ( N   ) Bias Function | G   , T  |   G   , T  for Model M2.

  11. Quantiles of Pooled OLS Estimator of  = 0.9 Quantiles of pooled OLS estimator Sample Model M1 Model M2 Model M3 5% 95% 5% 95% 5% 95% N  1, T  50 0.710 0.962 0.628 0.937 0.548 0.904 N  1, T  100 0.787 0.948 0.749 0.935 0.713 0.920 N  10, T  50 0.858 0.928 0.799 0.889 0.735 0.843 N  10, T  100 0.874 0.920 0.847 0.902 0.820 0.882 N  20, T  50 0.872 0.921 0.816 0.880 0.755 0.831 N  20, T  100 0.882 0.915 0.857 0.896 0.830 0.874 N  30, T  50 0.878 0.917 0.824 0.875 0.763 0.825 N  30, T  100 0.885 0.913 0.861 0.893 0.835 0.870 N  t  1 T  pols   i  1  y it  1  y i.  1  y it  y i.   N  t  1 T  i  1  y it  1  y i.  1  2 For Model M2

  12. Implications for Estimation of Half life implications Half-Life of Unit Shock h = 6.5,  = 0.9 Sample Model M1 Model M2 Model M3 Quantile 5% 95% 5% 95% 5% 95% N  1, T  50 2.027 18.036 1.487 10.730 1.153 6.905 N  1, T  100 2.890 13.034 2.403 10.393 2.051 8.342 N  10, T  50 4.532 9.244 3.086 5.897 2.248 4.071 N  10, T  100 5.130 8.332 4.184 6.753 3.487 5.518 N  30, T  50 5.313 8.019 3.573 5.171 2.561 3.614 N  30, T  100 5.698 7.617 4.645 6.095 3.847 4.973  h  ln0.5/ ln   pols

  13. Panel Autoregression Panel AR density estimates density estimates 0.2 0.16 POLS PEMU 0.12 0.08 Single OLS 0.04 0 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 Empirical Distributions of Single Equation OLS, POLS and PEMU No Cross Section Dependence N = 20, T = 100,   0.9

  14. Bias Reduction in Dynamic Bias reduction Panel Regression � Use Bias Correction Methods � asymptotic bias formulae – Hahn & Kuersteiner (2002), Phillips & Sul (2003) � Median Unbiased Estimation Lehmann (1959), Andrews (1993), Cermeno (1999), Phillips & Sul (2003) � use invariance property & median function of panel pooled OLS estimator � median function m     m T , N    � panel median unbiased estimator  pols  m  1  , 1 if    pemu  m  1    pols   pols  m  1  , if m   1     pols  m   1  ,  1 if 

  15. Panel MU Estimation Panel MU Estimation � Works well …. but � Uses Gaussianity � Need to have/find median functions by simulation � Is the median function increasing? Does the inverse function exist?  pols  , m  1  m  1    pfgls  � Is it Invariant? � What about more complex models?

  16. Model M3 Model M3 Fitted Trend: pooled estimator bias      H   , T    2 1   plim N     T  2  O  T  2  Unit Root Case M3 7 .5   1    p lim N     T  2 holds in heterogeneous error case inconsistency is > twice incidental trend case for T < 20, bias is very substantial

  17. Inconsistency for Model M3 Asymptotic ( N   ) Bias Function | H   , T  |   H   , T  for Model M3.

  18. Effect of Detrending Bias on Panel Data 10 y t 5 0 y t-1 -10 -5 0 5 10 -5 -10   0.90  Sample Data before Detrending ( T  4, N  1,000,   0.9,  Panel Model y it   y it  1   it ,  it  iid N  0, 1  t  1, . . . , T ; i  1, . . . , N

  19. After Detrending 2 y t 1 0 y t-1 -2 -1 0 1 2 -1 -2 Detrended Data ( T  4, N  1,000;   0.9,    plim N       0.502,     0.53 ). Panel Model y it   y it  1   it ,  it  iid N  0, 1  t  1, . . . , T ; i  1, . . . , N

  20. Models with Exogenous Panel AR density estimates Variables Model M4     y    y   1  Z u Asymptotic Bias M4, |  | < 1  2 A   , T            plim N  2 B   , T     plim N    ,  1   1 N Z Q Z  Z  ,  1     j Z   , t  it  j   j  0 i Z      plim   Z   1 Z   Z       plim      Z ,  1  plim     N N N

  21. Models with Cross Section Models with cross section dependence Dependence I Model M2 + CSD K  is  st   it y it  a i   y it  1  u it , u it   s  1 where 2  over t  st  s  1, . . . , K   iid  0,  s  N N  i  1 1 2 2  si    s lim N   Asymptotic Bias M2 + CSD, |  | < 1        2 A   , T    AT plim N      2 B   , T    BT K  s  1 2   s 2   s 2  1   s   1   T  1   1  o a . s . T K T  2   s  1 2   s 2   s

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend