new interactions past and future experiments
play

New interactions: past and future experiments Michele Maltoni - PowerPoint PPT Presentation

New interactions: past and future experiments Michele Maltoni Departamento de F sica Te orica & Instituto de F sica Te orica Universidad Aut onoma de Madrid Neutrino 2008, Christchurch, New Zealand May 27, 2008 I.


  1. New interactions: past and future experiments Michele Maltoni Departamento de F´ ısica Te´ orica & Instituto de F´ ısica Te´ orica Universidad Aut´ onoma de Madrid Neutrino 2008, Christchurch, New Zealand – May 27, 2008 I. Non-standard interactions with matter Violation of fundamental principles Neutrino magnetic moment II. Models with extra sterile neutrinos Long-range leptonic forces III. Neutrino decay and decoherence Mass-varying neutrinos . . . Summary

  2. I. Non-standard interactions with matter 2 Lagrangian formalism • Effective low-energy Lagrangian for standard neutrino interactions with matter: √ √ 2 G F ∑ 2 G F ∑ g f ν β γ µ L ℓ β ][ ¯ f γ µ Lf ′ ]+ h.c. ν β γ µ L ν β ][ ¯ f γ µ P f ] L eff � � SM = − 2 [ ¯ − 2 P [ ¯ β P , β where P ∈ { L , R } , ( f , f ′ ) form an SU ( 2 ) doublet, and g f P is the Z coupling to fermion f : L = 1 L = sin 2 θ W − 1 L = − 2 3 sin 2 θ W + 1 L = 1 3 sin 2 θ W − 1 g ν g ℓ g u g d 2 , 2 , 2 , 2 , R = − 2 R = 1 g ν g ℓ R = sin 2 θ W , 3 sin 2 θ W , 3 sin 2 θ W ; g u g d R = 0 , • here we consider NC-like non-standard neutrino-matter described by: √ 2 G F ∑ ε fP ν α γ µ L ν β ][ ¯ f γ µ P f ] ; L eff αβ [ ¯ NSI = − 2 P , α , β note that ε fP αβ is Hermitian; • for convenience, we also define the vector component ε fV αβ = ε fL αβ + ε fR αβ . Michele Maltoni <michele.maltoni@uam.es> N EUTRINO 2008, C HRISTCHURCH , 27/05/2008

  3. I. Non-standard interactions with matter 3 Bounds from non-oscillation experiments (Flavor Conserving) ν e e → ν e LSND − 0 . 03 < ε eL 0 . 004 < ε eR ee < 0 . 08 ee < 0 . 15 good [1, 2] ν e e → ¯ ν e ¯ Reactors − 1 < ε uL − 0 . 4 < ε uR ν e q → ν q ee < 0 . 3 ee < 0 . 7 CHARM mild [3] − 0 . 3 < ε dL − 0 . 6 < ε dR ν e q → ν q ee < 0 . 3 ee < 0 . 5 CHARM mild [3] | ε eL | ε eR ν µ e → ν e µµ | < 0 . 03 µµ | < 0 . 03 CHARM II good [1, 3] | ε uL − 0 . 008 < ε uR ν µ q → ν q µµ | < 0 . 003 µµ < 0 . 003 NuTeV strong [3] | ε dL − 0 . 008 < ε dR ν µ q → ν q µµ | < 0 . 003 µµ < 0 . 015 NuTeV strong [3] e + e − → ν ¯ − 0 . 5 < ε eL − 0 . 3 < ε eR νγ ττ < 0 . 2 ττ < 0 . 4 LEP mild [1, 4] | ε uL | ε uR τ decay ττ | < 1 . 4 ττ | < 3 rad. corrections poor [3] | ε dL | ε dR τ decay ττ | < 1 . 1 ττ | < 6 rad. corrections poor [3] (limits at 90% CL varying one parameter at a time ) [1] J. Barranco et al. , arXiv:0711.0698 . [2] J. Barranco et al. , Phys. Rev. D73 (2006) 113001 [ hep-ph/0512195 ]. [3] S. Davidson et al. , JHEP 03 (2003) 011 [ hep-ph/0302093 ]. [4] Z. Berezhiani and A. Rossi, Phys. Lett. B535 (2002) 207 [ hep-ph/0111137 ]. Michele Maltoni <michele.maltoni@uam.es> N EUTRINO 2008, C HRISTCHURCH , 27/05/2008

  4. I. Non-standard interactions with matter 4 Bounds from non-oscillation experiments (Flavor Changing) | ε eL | ε eR eµ | < 0 . 0005 eµ | < 0 . 0005 µ → 3 e rad. corrections strong [3] | ε uL | ε uR eµ | < 0 . 0008 eµ | < 0 . 0008 Ti µ → Ti e rad. corrections strong [3] | ε dL | ε dR eµ | < 0 . 0008 eµ | < 0 . 0008 Ti µ → Ti e rad. corrections strong [3] | ε eL | ε eR ν e e → ν e e τ | < 0 . 33 e τ | < 0 . 28 LEP+LSND+Rea mild [1, 4] | ε uL | ε uR ν e q → ν q e τ | < 0 . 5 e τ | < 0 . 5 CHARM mild [3] | ε dL | ε dR ν e q → ν q e τ | < 0 . 5 e τ | < 0 . 5 CHARM mild [3] | ε eL | ε eR ν µ e → ν e µ τ | < 0 . 1 µ τ | < 0 . 1 CHARM II good [1, 3] | ε uL | ε uR ν µ q → ν q µ τ | < 0 . 05 µ τ | < 0 . 05 NuTeV good [3] | ε dL | ε dR ν µ q → ν q µ τ | < 0 . 05 µ τ | < 0 . 05 NuTeV good [3] (limits at 90% CL varying one parameter at a time ) WARNING: bounds become weaker when correlations among parameters are included! [1] J. Barranco et al. , arXiv:0711.0698 . [3] S. Davidson et al. , JHEP 03 (2003) 011 [ hep-ph/0302093 ]. [4] Z. Berezhiani and A. Rossi, Phys. Lett. B535 (2002) 207 [ hep-ph/0111137 ]. Michele Maltoni <michele.maltoni@uam.es> N EUTRINO 2008, C HRISTCHURCH , 27/05/2008

  5. I. Non-standard interactions with matter 5 NSI and neutrino oscillations • Equation of motion: lots of parameters: ν id � 1 0 · U † + V SM + V NSI ; � � ν ; 0 , ∆ m 2 21 , ∆ m 2 H = U · H d H d dt = H � 0 = diag ; 31 2 E ν s 13 e − i δ CP ν e     c 12 c 13 s 12 c 13 − s 12 c 23 − c 12 s 13 s 23 e i δ CP c 12 c 23 − s 12 s 13 s 23 e i δ CP ν = ν µ � U =  ,  ; c 13 s 23       s 12 s 23 − c 12 s 13 c 23 e i δ CP − c 12 s 23 − s 12 s 13 c 23 e i δ CP c 13 c 23 ν τ ε fV ε fV ε fV   e τ ee eµ √ √ N f 2 G F N e ∑ ∗ ε fV ε fV ε fV V SM = ± 2 G F N e diag ( 1 , 0 , 0 ) ; V NSI = ±  ;  µ τ  eµ µµ ∗ ε fV ∗ ε fV N e  f ε fV e τ µ τ ττ • note that only the vector couplings ε fV αβ = ε fL αβ + ε fR αβ appear in propagation; • however, NC-like NSI can affect detection ( e.g. , ν e → ν e elastic scattering); ⋆ too much parameters ⇒ only partial analyses so far. . . Michele Maltoni <michele.maltoni@uam.es> N EUTRINO 2008, C HRISTCHURCH , 27/05/2008

  6. I. Non-standard interactions with matter 6 Solar neutrinos • As in the SM case, solar neutrinos can be reduced to an effective 2 ν problem [5]: � � � � � � �� ν ∆ m 2 − cos2 θ 12 sin2 θ 12 ε f √ c 2 √ id � 13 0 0 ν , 21 � dt = ± 2 G F N e ( r ) ± 2 G F N f ( r ) sin2 θ 12 cos2 θ 12 ε f ε ′ 4 E ν 0 0 f  eµ c 23 − ε fV e τ s 23 ) − s 13 [ ε fV µµ − ε fV ε f = c 13 ( ε fV µ τ ( c 2 23 − s 2 23 )+( ε fV ττ ) c 23 s 23 ] ,  � � ν e   ν = ε ′ f = ε fV 23 + ε fV 23 − ε fV ee − 2 ε fV µ τ c 23 s 23 + 2 s 13 c 13 ( ε fV e τ c 23 + ε fV µµ c 2 ττ s 2 � , eµ s 23 ) ν a  13 ( ε fV 23 + ε fV 23 − ε fV ee + 2 ε fV − s 2 ττ c 2 µµ s 2  µ τ s 23 c 23 )  (neglecting for simplicity δ CP and the complex phases in ε fV αβ ); • Analyses in the literature [5, 6] focus on f = { u , d } , because (1) bounds on ε qV αβ are weaker, and (2) for f = e SK detection is also affected by NSI. • pre-Borexino solar data can be perfectly fitted by NSI only ( i.e. , ∆ m 2 21 = 0 ); • however, KamLAND requires ∆ m 2 21 ⇒ pure NSI solution no longer interesting. [5] M. Guzzo et al. , Nucl. Phys. B629 (2002) 479 [ hep-ph/0112310 ]. [6] A. M. Gago et al. , Phys. Rev. D65 (2002) 073012 [ hep-ph/0112060 ]. Michele Maltoni <michele.maltoni@uam.es> N EUTRINO 2008, C HRISTCHURCH , 27/05/2008

  7. I. Non-standard interactions with matter 7 Solar neutrinos with both oscillations and NSI • Solar LMA solution is unstable with respect to the introduction of NSI [7, 8, 9]; • KamLAND is insensitive to NSI ⇒ it determines ∆ m 2 21 ; • bounds on ε q and ε ′ q from combined Solar+KamLAND analysis are very weak. 20 [9] Present [7] Future 15 LMA-II LMA-II ∆ m 2 (eV 2 ) LMA-I LMA-I 2 ∆χ 10 LMA-0 5 90% C.L. 90% C.L. 0 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 1 ε ε ’ tan 2 θ tan 2 θ [7] O. G. Miranda, M. A. Tortola, and J. W. F. Valle, JHEP 10 (2006) 008 [ hep-ph/0406280 ]. . C. de Holanda, and O. L. G. Peres, Phys. Lett. B591 (2004) 1 [ hep-ph/0403134 ]. [8] M. M. Guzzo, P [9] A. Friedland, C. Lunardini, and C. Pena-Garay, Phys. Lett. B594 (2004) 347 [ hep-ph/0402266 ]. Michele Maltoni <michele.maltoni@uam.es> N EUTRINO 2008, C HRISTCHURCH , 27/05/2008

  8. I. Non-standard interactions with matter 8 Atmospheric neutrinos: the ν µ − ν τ channel • We consider NSI in the µ − τ sector [10] (note that ε fV µµ ≈ 0 from LAB data): � ∆ m 2 � � � ε fV �� � � ν − cos2 θ 23 sin2 θ 23 √ ν µ id � 0 µ τ ν , ν = 31 ∗ ε fV � � dt = ± 2 G F N f ( r ) ; sin2 θ 23 cos2 θ 23 ν τ ε fV 4 E ν µ τ ττ • determination of oscillation parameters is very stable ; 0 4 • 90% ( 3 σ ) bounds on NSI [11]: 10 F = √  [11] 2 /4 f = e f = e µµ | � | ε eV µ τ | ≤ 0 . 038 ( 0 . 058 ), ττ − ε e 2 ] -3 eV -1 3 ( e ) 10 | ε eV 2 + | ε e ττ | ≤ 0 . 12 ( 0 . 19 ); 31 [10 ★ � µτ | | ε uV µ τ | ≤ 0 . 012 ( 0 . 019 ), 2 | ε e -2 2 ∆ m 10 ( u ) | ε uV ττ | ≤ 0 . 039 ( 0 . 061 ); -3 1 � | ε dV 10 µ τ | ≤ 0 . 012 ( 0 . 019 ), 0 0.25 0.5 0.75 1 -1 -0.5 0 0.5 1 2 θ 23 ( d ) | ε e µτ | / F sin | ε dV ττ | ≤ 0 . 038 ( 0 . 060 ); • Bounds on ε fV ττ are much stronger than LAB ones. [10] N. Fornengo et al. , Phys. Rev. D65 (2002) 013010 [ hep-ph/0108043 ]. [11] M. C. Gonzalez-Garcia and M. Maltoni, Phys. Rept. 460 (2008) 1 [ arXiv:0704.1800 ]. Michele Maltoni <michele.maltoni@uam.es> N EUTRINO 2008, C HRISTCHURCH , 27/05/2008

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend