new algorithms for quantum symmetric cryptanalysis
play

New Algorithms for Quantum (Symmetric) Cryptanalysis Mara - PowerPoint PPT Presentation

Quantum-safe (Symmetric) Cryptography Quantum Collision Search Quantum k-xor Algorithms New Algorithms for Quantum (Symmetric) Cryptanalysis Mara Naya-Plasencia 2 , Andr Schrottenloher 2 Joint work with Andr Chailloux 2 and Lorenzo Grassi


  1. Quantum-safe (Symmetric) Cryptography Quantum Collision Search Quantum k-xor Algorithms New Algorithms for Quantum (Symmetric) Cryptanalysis María Naya-Plasencia 2 , André Schrottenloher 2 Joint work with André Chailloux 2 and Lorenzo Grassi 1 1 IAIK, Graz University of Technology, Austria 2 Inria, France May 19, 2019 M. Naya-Plasencia, A. Schrottenloher Quantum (Symmetric) Cryptanalysis 1/59

  2. Quantum-safe (Symmetric) Cryptography Quantum Collision Search Quantum k-xor Algorithms Outline Quantum-safe (Symmetric) Cryptography 1 Quantum Collision Search 2 Quantum k-xor Algorithms 3 M. Naya-Plasencia, A. Schrottenloher Quantum (Symmetric) Cryptanalysis 2/59

  3. Quantum-safe (Symmetric) Cryptography Quantum Collision Search Quantum k-xor Algorithms Quantum-safe (Symmetric) Cryptography M. Naya-Plasencia, A. Schrottenloher Quantum (Symmetric) Cryptanalysis 3/59

  4. Quantum-safe (Symmetric) Cryptography Quantum Collision Search Quantum k-xor Algorithms (Pre-quantum) cryptography Enable secure communications even in the presence of malicious adversaries. Asymmetric (e.g. RSA) No shared secret / computationally costly Security based on well-known hard mathematical problems (e.g. factorization) Symmetric (e.g. AES) Shared secret / computationally efficient Ideal security defined by generic attacks (e.g. 2 | K | ) Need of continuous security evaluation (cryptanalysis) M. Naya-Plasencia, A. Schrottenloher Quantum (Symmetric) Cryptanalysis 4/59

  5. Quantum-safe (Symmetric) Cryptography Quantum Collision Search Quantum k-xor Algorithms A typical symmetric primitive Ideal block cipher E K is a family of permutations of { 0 , 1 } n parameterized by K . Real block cipher: Typically built by iterating a round function Select a key K Decompose the message into n -bit blocks and use E K with a mode of operation M. Naya-Plasencia, A. Schrottenloher Quantum (Symmetric) Cryptanalysis 5/59

  6. Quantum-safe (Symmetric) Cryptography Quantum Collision Search Quantum k-xor Algorithms Generic attacks on ciphers The security provided by an ideal block cipher is defined by the best generic attack: exhaustive search for the key in 2 | K | Recovering the key from a secure cipher must be infeasible. Typical key sizes range from | K | = 128 to 256 bits. M. Naya-Plasencia, A. Schrottenloher Quantum (Symmetric) Cryptanalysis 6/59

  7. Quantum-safe (Symmetric) Cryptography Quantum Collision Search Quantum k-xor Algorithms Symmetric cryptanalysis The ideal security is defined by generic attacks (2 | K | ) Does real security meet this ideal security? We won’t know . . . without a continuous security evaluation. Any attack better than the generic one is considered a “break”. Cryptanalysis is an empirical measure of security. M. Naya-Plasencia, A. Schrottenloher Quantum (Symmetric) Cryptanalysis 7/59

  8. Quantum-safe (Symmetric) Cryptography Quantum Collision Search Quantum k-xor Algorithms The security margin The security of a cipher is not a 1-bit information: e.g. round-reduced attacks. ⇒ determine and adapt the security margin. The best attacks find the highest number of rounds reached (regardless of the complexity) Allows to compare primitives M. Naya-Plasencia, A. Schrottenloher Quantum (Symmetric) Cryptanalysis 8/59

  9. Quantum-safe (Symmetric) Cryptography Quantum Collision Search Quantum k-xor Algorithms Quantum-safe (Symmetric) Cryptography M. Naya-Plasencia, A. Schrottenloher Quantum (Symmetric) Cryptanalysis 9/59

  10. Quantum-safe (Symmetric) Cryptography Quantum Collision Search Quantum k-xor Algorithms Post-quantum cryptography Asymmetric (e.g. RSA) Shor’s algorithm factorizes in polynomial time: this is not secure anymore. Actively looking for replacements (NIST call) Symmetric (e.g. AES) Exhaustive search in 2 | K | / 2 with Grover’s algorithm. Double the key length for equivalent ideal security. In both cases, lots of work regarding quantum attacks. M. Naya-Plasencia, A. Schrottenloher Quantum (Symmetric) Cryptanalysis 10/59

  11. Quantum-safe (Symmetric) Cryptography Quantum Collision Search Quantum k-xor Algorithms Many new results Breaking some classically secure constructions in some quantum adversary models Extending cryptanalysis studies to quantum adversaries Solving recurrent generic problems M. Naya-Plasencia, A. Schrottenloher Quantum (Symmetric) Cryptanalysis 11/59

  12. Quantum-safe (Symmetric) Cryptography Quantum Collision Search Quantum k-xor Algorithms Quantum search Find in S (of size 2 n ) an element x (2 t solutions) such that x satisfies some condition. � � 2 ( n − t ) / 2 Sampling + Checking � �� � � �� � � �� � 2 t solutions Produce the Test a among 2 n superposition of search space S in superposition x ∈ S M. Naya-Plasencia, A. Schrottenloher Quantum (Symmetric) Cryptanalysis 12/59

  13. Quantum-safe (Symmetric) Cryptography Quantum Collision Search Quantum k-xor Algorithms Two settings “Low-qubits” Only O ( n ) qubits, no qRAM access. ⇒ A quantum adversary from tomorrow. Exponential qRAM Read and write access in quantum superposition: � � | i � | 0 � → | i � | a i � i i M. Naya-Plasencia, A. Schrottenloher Quantum (Symmetric) Cryptanalysis 13/59

  14. Quantum-safe (Symmetric) Cryptography Quantum Collision Search Quantum k-xor Algorithms Quantum Collision Search with A. Chailloux, M. Naya-Plasencia M. Naya-Plasencia, A. Schrottenloher Quantum (Symmetric) Cryptanalysis 14/59

  15. Quantum-safe (Symmetric) Cryptography Quantum Collision Search Quantum k-xor Algorithms The birthday problem Collision search Let H : { 0 , 1 } n → { 0 , 1 } n be a random function, find a collision of H , i.e. a pair x 1 , x 2 ∈ { 0 , 1 } n such that H ( x 1 ) = H ( x 2 ) . Numerous applications, e.g. generic attacks on hash functions. Classical time and queries: Θ( 2 n / 2 ) With 2 n / 2 queries, we can form 2 n pairs, an n -bit collision occurs w.h.p. We can do this in O ( n ) memory (Pollard’s rho) M. Naya-Plasencia, A. Schrottenloher Quantum (Symmetric) Cryptanalysis 15/59

  16. Quantum-safe (Symmetric) Cryptography Quantum Collision Search Quantum k-xor Algorithms Quantum algorithms for collisions Time Queries Qubits / Classical qRAM memory 2 n / 2 2 n / 2 Pollard 0 O ( n ) 2 n / 2 2 n / 2 Grover O ( n ) 0 2 n / 3 2 n / 3 2 n / 3 2 n / 3 Brassard, Høyer, Tapp 2 2 n / 3 2 n / 3 2 n / 3 BHT (*) O ( n ) M. Naya-Plasencia, A. Schrottenloher Quantum (Symmetric) Cryptanalysis 16/59

  17. Quantum-safe (Symmetric) Cryptography Quantum Collision Search Quantum k-xor Algorithms Collision search in a low-qubits setting Single-processor Only O ( n ) qubits No qRAM lookups M. Naya-Plasencia, A. Schrottenloher Quantum (Symmetric) Cryptanalysis 17/59

  18. Quantum-safe (Symmetric) Cryptography Quantum Collision Search Quantum k-xor Algorithms A naive collision algorithm Perform ℓ arbitrary classical queries to H : H ( x 1 ) , . . . , H ( x ℓ ) . Search x ∈ { 0 , 1 } n such that: H ( x ) ∈ { H ( x 1 ) , . . . , H ( x ℓ ) } Optimal ℓ = 2 n / 2 : 2 n / 2 + 2 n 2 n / 2 M. Naya-Plasencia, A. Schrottenloher Quantum (Symmetric) Cryptanalysis 18/59

  19. Quantum-safe (Symmetric) Cryptography Quantum Collision Search Quantum k-xor Algorithms A quantum collision algorithm Naive classical: Quantum (BHT): Perform ℓ arbitrary Perform ℓ arbitrary classical classical queries to H : queries to H : H ( x 1 ) , . . . , H ( x ℓ ) . H ( x 1 ) , . . . , H ( x ℓ ) . With Grover , search Search x ∈ { 0 , 1 } n such x ∈ { 0 , 1 } n such that that: H ( x ) ∈ { H ( x 1 ) , . . . , H ( x ℓ ) } . Optimal ℓ = 2 n / 3 : H ( x ) ∈ { H ( x 1 ) , . . . , H ( x ℓ ) } � � � 2 n Optimal ℓ = 2 n / 2 : n 2 + 1 + 1 3 ���� ���� 2 n / 3 � �� � 2 n / 2 + 2 n List qRAM Iterations lookup 2 n / 2 M. Naya-Plasencia, A. Schrottenloher Quantum (Symmetric) Cryptanalysis 19/59

  20. Quantum-safe (Symmetric) Cryptography Quantum Collision Search Quantum k-xor Algorithms Removing qRAM We have a list L = { H ( x 1 ) , . . . , H ( x ℓ ) } , known classically, and want to compute: | y � | 0 � �→ | y � | y ∈ L � . With qRAM: build a data structure for L , compute membership in O ( log ℓ ) qRAM gates; Without qRAM: compare sequentially against elements of L . We compute: | y � | 0 � �→ | y � | ( y = H ( x 1 )) ∨ ( y = H ( x 2 )) . . . ∨ ( y = H ( x ℓ )) � in time � O ( ℓ ) . M. Naya-Plasencia, A. Schrottenloher Quantum (Symmetric) Cryptanalysis 20/59

  21. Quantum-safe (Symmetric) Cryptography Quantum Collision Search Quantum k-xor Algorithms BHT without quantum memory Queries: � 2 n / 3 + 2 n / 2 n / 3 ( 1 + 0 ) Time: 2 n / 3 + 2 n / 3 � 1 + 2 n / 3 � M. Naya-Plasencia, A. Schrottenloher Quantum (Symmetric) Cryptanalysis 21/59

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend